Skip to main content
Log in

Molecular Dynamics Simulation of Interfacial Thermal Resistance Between a (10,10) Carbon Nanotube and SiO2

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Understanding thermal transport between carbon nanotubes (CNTs) and dielectric substrates is important both for nanoscale thermal management and CNT device applications. We investi-gate thermal transport between a (10,10) CNT and an SiO2 substrate through non-equilibrium classical molecular dynamics (MD) simulations. The thermal boundary conductance (TBC) is computed by setting up a temperature pulse in the CNT and monitoring its relaxation. The TBC is found to scale nearly linearly with temperature between 200–600 K, where a quantum correction is applied to the CNT heat capacity through its phonon density of states. However, the TBC ap-pears most sensitive to the strength the CNT-substrate interaction, which linearly modulates it between 0.05–0.30 WK−1m−1, in the range suggested by recent experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pop {etet al.}, Phys. Rev. Lett. 95, 155505 (2005).

    Article  Google Scholar 

  2. S. Berber, Y.-K. Kwon, and D. Tománek, Phys. Rev. Lett. 84, 4613 (2000).

    Article  CAS  Google Scholar 

  3. R. Prasher Nano Lett. 5, 2155 (2005).

    Article  CAS  Google Scholar 

  4. E. Pop {etet al.}, J. Appl. Phys. 101, 093710 (2007).

    Article  Google Scholar 

  5. C. F. Carlborg, J. Shiomi and S. Maruyama Phys. Rev. B 78, 205406 (2008).

    Article  Google Scholar 

  6. T. C. Clancy and T. S. Gates Polymer 47, 5990 (2006).

    Article  CAS  Google Scholar 

  7. S. Shenogin {etet al.}, J. Appl. Phys. 95, 8136 (2004).

    Article  CAS  Google Scholar 

  8. S. Plimpton J. Comput. Phys. 117, 1 (1995).

    Google Scholar 

  9. S. J. Stuart, A. B. Tutein and J. A. Harrison J. Chem. Phys. 112, 6472 (2000).

    Article  CAS  Google Scholar 

  10. D. W. Brenner Phys. Rev. B 42, 9458 (1990).

    Article  Google Scholar 

  11. S. Munetoh {etet al.}, Comp. Mat. Sci. 39, 334 (2007).

    Article  CAS  Google Scholar 

  12. J. M. Carpenter and D. L. Price Phys. Rev. Lett. 54, 441 (1985).

    Article  CAS  Google Scholar 

  13. B. M. Lee {etet al.}, Comp. Mat. Sci. 37, 203 (2006).

    Article  CAS  Google Scholar 

  14. T. Hertel, R. E. Walkup and P. Avouris Phys. Rev. B 58, 13870 (1998).

    Article  Google Scholar 

  15. A. K. Rappe {etet al.}, J. Am. Chem. Soc. 114, 10024 (1992).

    Article  CAS  Google Scholar 

  16. J. Diao, D. Srivastava and M. Menon J. Chem. Phys. 128, 164708 (2008).

    Article  Google Scholar 

  17. H. Maune, H.-Y. Chiu, and M. Bockrath Appl. Phys. Lett. 89, 013109 (2006).

    Article  Google Scholar 

  18. E. T. Swartz and R. O. Pohl Rev. Mod. Phys. 61, 605 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhun-Yong Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, ZY., Pop, E. Molecular Dynamics Simulation of Interfacial Thermal Resistance Between a (10,10) Carbon Nanotube and SiO2. MRS Online Proceedings Library 1172, 44–53 (2009). https://doi.org/10.1557/PROC-1172-T04-10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-1172-T04-10

Navigation