Skip to main content
Log in

Mechanism of Ion Exclusion by Sub-2nm Carbon Nanotube Membranes

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites.For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment.Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the salts (A=anion, C=cation, z= valence) with the greatest zA/zC ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Noy; H. G. Park; F. Fornasiero; J. K. Holt; C. P. Grigoropoulos; O. Bakajin. Nano Today 2007, 2, 22-29 (2007).

    Article  Google Scholar 

  2. G. Hummer; J. C. Rasaiah; J. P. Noworyta. Nature 2001, 414, 188-190 (2001).

    Article  Google Scholar 

  3. A. I. Kolesnikov; J. M. Zanotti; C. K. Loong; P. Thiyagarajan; A. P. Moravsky; R. O. Loutfy; C. J. Burnham. Phys Rev Lett 2004, 93, 35503 (2004).

    Article  Google Scholar 

  4. N. Naguib; H. Ye; Y. Gogotsi; A. G. Yazicioglu; C. M. Megaridis; M. Yoshimura. Nano Lett 2004, 4, 2237–2243 (2004).

    Article  Google Scholar 

  5. Y. Maniwa; K. Matsuda; H. Kyakuno; S. Ogasawara; T. Hibi; H. Kadowaki; S. Suzuki; Y. Achiba; H. Kataura. Nature Mater 2007, 6, 135-141 (2007).

    Article  Google Scholar 

  6. E. Mamontov; C. J. Burnham; S. H. Chen; A. P. Moravsky; C. K. Loong; N. R. de Souza; A. I. Kolesnikov. J Chem Phys 2006, 124, 194703 (2006).

    Article  Google Scholar 

  7. C. Corry. J Phys Chem B 2008, 112, 1427-1434 (2008).

    Article  Google Scholar 

  8. S. Joseph; N. R. Aluru. Nano Lett 2008, 8, 452-458 (2008).

    Article  Google Scholar 

  9. J. K. Holt; H. G. Park; Y. M. Wang; M. Stadermann; A. B. Artyukhin; C. P. Grigoropoulos; A. Noy; O. Bakajin. Science 2006, 312, 1034-1037 (2006).

    Article  Google Scholar 

  10. M. Majumder; N. Chopra; R. Andrews; B. J. Hinds. Nature 2005, 438, 44-44 (2005).

    Article  Google Scholar 

  11. A. Kalra, Garde, S. & Hummer, G. Proc Natl Acad Sci USA 2003, 100, 10175-10180 (2003).

    Article  Google Scholar 

  12. M. E. Suk; A. V. Raghunathan; N. R. Aluru. AIP, 2008, p 133120.

  13. F. Fornasiero; H. G. Park; J. K. Holt; M. Stadermann; C. P. Grigoropoulos; A. Noy; O. Bakajin. Proc Natl Acad Sci USA 2008, in press (2008).

  14. D. Q. Yang; J. F. Rochette; E. Sacher. Langmuir 2005, 21, 8539-8545 (2005).

    Article  Google Scholar 

  15. P. H. Li; X. D. Lim; Y. W. Zhu; T. Yu; C. K. Ong; Z. X. Shen; A. T. S. Wee; C. H. Sow. J Phys Chem B 2007, 111, 1672-1678 (2007).

    Article  Google Scholar 

  16. S. S. Wong; A. T. Woolley; E. Joselevich; C. L. Cheung; C. M. Lieber. J Am Chem Soc 1998, 120, 8557-8558 (1998).

    Article  Google Scholar 

  17. S. S. Wong; E. Joselevich; A. T. Woolley; C. L. Cheung; C. M. Lieber. Nature 1998, 394, 52-55 (1998).

    Article  Google Scholar 

  18. E. R. Nightingale. J Phys Chem 1959, 63, 1381-1387 (1959).

    Article  Google Scholar 

  19. D. J. Carter; M. I. Ogden; A. L. Rohl; Yz. Aust J Chem 2003, 56, 675-678 (2003).

    Article  Google Scholar 

  20. M. Majumder; N. Chopra; B. J. Hinds. J Am Chem Soc 2005, 127, 9062-9070 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornasiero, F., Park, H.G., Holt, J.K. et al. Mechanism of Ion Exclusion by Sub-2nm Carbon Nanotube Membranes. MRS Online Proceedings Library 1106, 303 (2008). https://doi.org/10.1557/PROC-1106-PP03-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1106-PP03-03

Navigation