Skip to main content
Log in

Octadecyltriethoxysilane Surface Modification of Zinc Oxide

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Zinc Oxide (ZnO) is actively investigated for hybrid organic inorganic device applications. The interface greatly influences the electronic properties of these devices. Molecular surface modification of ZnO is being investigated for its potential to control the alignment of energy levels, charge transfer, as well as, interfacial chemical characteristics that influence device fabrication. In this study, octadecyltriethoxysilane (OTES) treatments of thin film ZnO produced by sol-gel decomposition were explored. The ZnO films were hydroxylated and then modified using OTES in solution. The condensation reaction of the OTES at the surface was promoted by the addition of a protoamine catalyst. Contact angle and infrared spectroscopy studies confirmed the surface modification and indicated that the coverage of the OTES was submonolayer. The modified ZnO films were reproducible and stable for long periods. The effects of the modification on subsequently spin-cast poly[3-hexylthiophene](P3HT) and on hybrid ZnO/P3HT organic solar cell performance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Olson ; J. Piris ; R. T. Collins ; S. E. Shaheen ; D. S. Ginley Thin Solid Films 2006, 496, 26–29.

    Article  CAS  Google Scholar 

  2. O. Regan B. Gratzel M. Nature 1991, 353, 737–740.

    Google Scholar 

  3. J. H. Burroughes ; D. D. C. Bradley ; A. R. Brown ; R. N. Marks ; K. Mackay ; R. H. Friend ; P. L. Burns ; A. B. Holmes Nature 1990, 347, 539–541.

    Article  CAS  Google Scholar 

  4. S. A. Haque ; S. Koops ; N. Tokmoldin ; J. R. Durrant ; J. Huang ; D. D. C. Bradley ; E. Palomares Advanced Materials 2007, 19, 683–687.

    Article  CAS  Google Scholar 

  5. M. S. White ; D. C. Olson ; S. E. Shaheen ; N. Kopidakis ; D. S. Ginley Applied Physics Letters 2006, 89, 143517.

    Article  Google Scholar 

  6. W. J. E. Beek ; M. M. Wienk ; M. Kemerink ; X. Yang ; R. A. J. Janssen J. Phys. Chem. B 2005, 109, 9505–9516.

    Article  CAS  Google Scholar 

  7. K. M. Coakley ; M. D. Mcgehee Applied Physics Letters 2003, 83, 3380–3382.

    Article  CAS  Google Scholar 

  8. J. B. Baxter ; E. S. Aydil Applied Physics Letters 2005, 86, 053114.

    Article  Google Scholar 

  9. P. Ravirajan ; A. M. Peiro ; M. K. Nazeeruddin ; M. Graetzel ; D. D. C. Bradley ; J. R. Durrant ; J. J. Nelson Phys. Chem. B 2006, 110, 7635–7639.

    Article  CAS  Google Scholar 

  10. B. A. Gregg Mater. Res. Bull. 2005, 30, 20–22.

    Article  CAS  Google Scholar 

  11. N. Kudo ; S. Honda ; Y. Shimazaki ; H. Ohkita ; S. Ito ; H. Benten Applied Physics Letters 2007, 90, 183513.

    Article  Google Scholar 

  12. L.W. Chong ; Y.L. Lee ; T.C. Wen Thin Solid Films 2007, 515, 2833–2841.

    Article  CAS  Google Scholar 

  13. C. Goh ; S. R. Scully ; M. D. Mcgehee Journal of Applied Physics 2007, 101, 114503+.

    Article  Google Scholar 

  14. J. J. Sagiv Am. Chem. Soc. 1980, 102, 92–98.

    Article  CAS  Google Scholar 

  15. D. K. Schwartz Annu. Rev. Phys. Chem. 2001, 52, 107–137.

    Article  CAS  Google Scholar 

  16. A. Salleo ; M. L. Chabinyc ; M. S. Yang ; R. A. Street Applied Physics Letters 2002, 81, 4383–4385.

    Article  CAS  Google Scholar 

  17. J. Peet ; J. Y. Kim ; N. E. Coates ; W. L. Ma ; D. Moses ; A. J. Heeger ; G. C. Bazan Nat Mater 2007, 6, 497–500.

    Article  CAS  Google Scholar 

  18. D. M. Walba ; C. A. Liberko ; E. Korblova ; M. Farrow ; T. E. Furtak ; B. C. Chow ; D. K. Schwarz ; A. S. Freeman ; K. Douglas ; S. D. Williams ; A. F. Klittnick ; N. A. Clark Liquid Crystals 2004, 31, 481–489.

    Article  CAS  Google Scholar 

  19. J. Blitz P. Shreedhara ,; D. E. Leyden Journal of Colloid and Interface Science 1988, 126, 387–392.

    Article  CAS  Google Scholar 

  20. M. Ohyama ; H. Kouzuka ; T. Yoko Thin Solid Films 1997, 306, 78–85.

    Article  CAS  Google Scholar 

  21. A. F. Stalder ; G. Kulik ; L. Barbieri ; P. Hoffmann Colloids Surf., A 2006, 286, 92–103.

    Article  CAS  Google Scholar 

  22. N. Asakuma ; T. Fukui ; M. Toki ; K. Awazu ; H. Imai Thin Solid Films 2003, 445, 284–287.

    Article  CAS  Google Scholar 

  23. R. G. Nuzzo ; L. H. Dubois ; D. L. Allara Journal of American Chemecial Society 1990, 112, 558–569.

    Article  CAS  Google Scholar 

  24. M. C. Howland ; M. S. Johal ; A. N. Parikh Langmuir 2005, 21, 10468–10474.

    Article  CAS  Google Scholar 

  25. A. N. Parikh ; D. L. Allara ; I. B. Azouz ; F. Rondelez Journal of Physical Chemistry 1994, 98, 7577–7590.

    Article  CAS  Google Scholar 

  26. R. A. Macphail ; H. L. Strauss ; R. G. Snyder ; C. A. Elliger Journal of Physical Chemistry 1984, 88, 334–341.

    Article  CAS  Google Scholar 

  27. R. G. Snyder ; H. L. Strauss ; C. A. Elliger Journal of Physical Chemistry 1982, 86, 5145–5150.

    Article  CAS  Google Scholar 

  28. S. A. Kulkarni ; B. A. Kakade ; I. S. Mulla ; V. K. Pillai Journal of Colloid and Interface Science 2006, 299, 777–784.

    Article  CAS  Google Scholar 

  29. G. Wang ; J. Swensen ; D. Moses ; A. J. Heeger Journal of Applied Physics 2003, 93, 6137–6141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cary, G.A., Darick, J.B., Thomas, E.F. et al. Octadecyltriethoxysilane Surface Modification of Zinc Oxide. MRS Online Proceedings Library 1091, 10910578 (2008). https://doi.org/10.1557/PROC-1091-AA05-78

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1091-AA05-78

Navigation