Skip to main content
Log in

Self-aligned Amorphous Silicon Thin Film Transistors with Mobility above 1 cm2V−1s−1 fabricated at 300°C on Clear Plastic Substrates

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have developed a fabrication process for amorphous-silicon thin-film transistors (a-Si:H TFTs) on free-standing clear plastic substrates at temperatures up to 300°C. The 300°C fabrication process is made possible by using a unique clear plastic substrate that has a very low coefficient of thermal expansion (CTE < 10ppm/°C) and a glass transition temperature higher than 300°C. Our TFTs have a conventional inverted-staggered gate back-channel passivated geometry, which we designed to achieve two goals: accurate overlay alignment and a high effective mobility. A requirement that becomes particularly difficult to meet in the making of TFT backplanes on plastic foil at 300°C is minimizing overlay misalignment. Even though we use a substrate that has a relatively low CTE, accurately aligning the TFTs on the free-standing, 70-micrometer thick substrate is challenging. To deal with this immediate challenge, and to continue developing processes for free-standing web substrates, we are introducing techniques for self-alignment to our TFT fabrication process. We have self-aligned the channel to the gate by exposing through the clear plastic substrate. To raise the effective mobility of our TFTs we reduced the series resistance by decreasing the thickness of the amorphous silicon layer between the source-drain contacts and the accumulation layer in the channel. The back-channel passivated structure allows us to decrease the thickness of the a-Si:H active layer down to around 20nm. These changes have enabled us to raise the effective field effect mobility on clear plastic to values above 1 cm2V−1s−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jang Yeon Kwon, Do Young Kim, Hans S. Cho, Kyung Bae Park, Ji Sim Jung, Jong Man Kim, Young Soo Park, and Takashi Noguchi, “Low Temperature Poly-Si Thin Film Transistor on Plastic Substrates”, IEICE Trans. Electron., vol. E88.C, no. 4, pp. 667–671 (2005).

    Article  Google Scholar 

  2. D.P. Gosain, T. Noguchi, and S. Usui, “High mobility thin film transistors fabricated on plastic substrates at a processing temperature of 110°C,” Jpn. J. Appl. Phys. 2, Lett., vol.39, no.3A/B, pp.L179. L181 ( March 2000).

    Article  CAS  Google Scholar 

  3. K. Long, A. Z. Kattamis, I.C. Cheng, H. Gleskova, S. Wagner, J. C. Sturm, M. Stevenson, G. Yu, and M. O’Regan, “Active-Matrix Amorphous-Silicon TFTs Arrays at 180‘deg;C on Clear Plastic and Glass Substrates for Organic Light-Emitting Displays”, IEEE Trans. Elec. Dev., vol. 53, no. 8, pp. 1789–1796 (August 2006).

    Article  CAS  Google Scholar 

  4. K. R. Sarma, a-Si TFT OLED Fabricated on Low-Temperature Flexible Plastic Substrate., Mat. Res. Soc. Symp. Proc., Vol. 814, pp I13.1.1–12 (2004).

    Google Scholar 

  5. William A. MacDonald, “Engineered Films for Display Technologies”, J. Mater. Chem., vol. 14, pp 4–10 (2004)

    Article  CAS  Google Scholar 

  6. C. Blaauw, “Preparation and Characterization of Plasma-Deposited Silicon Nitride”, J. Electrochem. Soc., vol. 131, pp. 1114–1118 (1984).

    Article  CAS  Google Scholar 

  7. S. Wagner, H. Gleskova, J. C. Sturm, and Z. Suo, “Novel processing technology for macroelectronics,” in Technology and Application of Amorphous Silicon, R. A. Street, editor Springer, Berlin, pp.222–251 (2000).

    Book  Google Scholar 

  8. C.R. McArthur, “Optimization of 75°C Amorphous Silicon Nitride for TFTs on Plastics”, MASc thesis, University of Waterloo (2003).

  9. R. B. Wehrspohn, S. C. Deane, and I. D. French et al., “Relative importance of the Si-Si bond and Si.H bond for the stability of amorphous silicon thin film transistors,” J. Appl. Phys., vol. 87, issue 1, pp. 144. 154 (January 2000).

    Article  CAS  Google Scholar 

  10. C.S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates,” J. Vac. Sci. Technol. B, vol. 18, no. 2, pp. 683–689 (March/April 2000).

    Article  CAS  Google Scholar 

  11. Y. Kaneko, A. Sasano, and T. Tsukada, “Characterization of instability in amorphous silicon thin-film transistors,” J. Appl. Phys., vol. 69, pp. 7301–7305 (1991).

    Article  CAS  Google Scholar 

  12. K. Long, A.Z. Kattamis, I.C. Cheng, H. Gleskova, S. Wagner, J.C. Sturm, “Stability of amorphous-silicon TFTs deposited on clear plastic substrates at 250°C to 280°C,” IEEE Elec. Dev. Lett., vol.27, no.2, pp. 111–113 (Feb. 2006).

    Article  CAS  Google Scholar 

  13. Ke Long, “Towards Flexible Full-Color Active Matrix Organic Light-Emitting Displays: Dry Dye Printing For OLED Integration and 2800C Amorphous-Silicon Thin-Film Transistors on Clear Plastic Substrates”, Ph.D thesis, Princeton University (2006).

  14. A. Z. Kattamis, I. Chun Cheng, Ke Long, Bahman Hekmatshoar, Kunigunde Cherenack, Sigurd Wagner, James C. Sturm, Sameer Venugopal, Douglas E. Loy, Shawn M. O. Rourke, and David R. Allee . “Amorphous Silicon Thin Film Transistor Backplanes Deposited at 200°C on Clear Plastic”, J. Display Technology, vol. 3, no. 3, pp. 304–308 (September 2007).

    Article  CAS  Google Scholar 

  15. Kunigunde H. Cherenack, Alex Z. Kattamis, Bahman Hekmatshoar, James C. Sturm, and Sigurd Wagner, “Amorphous-Silicon Thin-Film Transistors Fabricated at 300°C on a Free-Standing Foil Substrate of Clear Plastic,” IEEE Electron Device Lett., vol. 28, no. 11, pp.1004–1006 (November 2007).

    Article  CAS  Google Scholar 

  16. Bahman Hekmatshoar, Alex Z. Kattamis, Kunigunde H. Cherenack, Jian-Zhang Chen Ke Long, Sigurd Wagner, James C. Sturm, Kamala Rajan, and Michael Hack, “Reliability of Active-Matrix Organic Light-Emitting-Diode Arrays With Amorphous Silicon Thin-Film Transistor Backplanes on Clear Plastic”, IEEE Electron Device Lett., vol. 29, pp. 63–66 (2008).

    Article  CAS  Google Scholar 

  17. I-Chun Cheng, Alex Kattamis, Ke Long, Jim Sturm, Sigurd Wagner, “Stress control for overlay registration in a-Si:H TFTs on flexible organic-polymer-foil substrates”, Journal of the SID, vol. 13, no. 7, pp. 563–568 (2005).

    CAS  Google Scholar 

  18. H. Gleskova, I. C. Cheng, S. Wagner, and Z. G. Suo, “Thermomechanical criteria for overlay alignment in flexible thin-film electronic circuits,” Applied Physics Lett., vol. 88, pp. 011905–1-3 (2006).

    Article  Google Scholar 

  19. F. Lemmi, W. Chung, S. Lin, P. M. Smith, T. Sasagawa, B. C. Drews, A. Hua, J. R. Stern, and J. Y. Chen, “High-performance TFTs fabricated on plastic substrates,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 486–488 (2004)

    Article  CAS  Google Scholar 

  20. A. Kattamis, I.C. Cheng, K. Long, J. C. Sturm, and S. Wagner, “Dimensionally stable processing of a-Si TFTs on polymer foils,” in Proc. 47th Ann. TMS Electron. Mater. Conf., p. 73 (2005)

  21. W. S. Wong, K. E. Paul, and R. A. Street, “Digital-lithographic processing for thin-film transistor array fabrication,” J. Non-Cryst. Sol., vol. 338-340, pp. 710–714 (2004)

  22. P. Rocai Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drevillon, and I. French, “Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique,” J. Appl. Phys. 86, 7079–7082 (1999)

    Article  Google Scholar 

  23. I. Chun Cheng, Alex Z. Kattamis, Ke Long, James C. Sturm, and Sigurd Wagner, “Self-Aligned Amorphous-Silicon TFTs on Clear Plastic Substrates”, IEEE Trans. Elec. Dev, vol. 27, no. 3 (March 2006)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunigunde, H.C., Alex, Z.K., Hekmatshoar, B. et al. Self-aligned Amorphous Silicon Thin Film Transistors with Mobility above 1 cm2V−1s−1 fabricated at 300°C on Clear Plastic Substrates. MRS Online Proceedings Library 1066, 10662003 (2007). https://doi.org/10.1557/PROC-1066-A20-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1066-A20-03

Navigation