Skip to main content
Log in

Novel Organometallic Fullerene Complexes for Vehicular Hydrogen Storage

  • Article
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Experimental wet chemical approaches have been demonstrated in the synthesis of a new chainlike (C60-Fe-C60-Fe)n complex. This structure has been proposed based on 13C solid-state nuclear magnetic resonance, electron paramagnetic resonance, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature-programmed desorption. The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Volumetric measurements at 77 K and 2 bar show a hydrogen adsorption capacity of 0.5 wt%. Interestingly, the BET surface area is ~31 m2/g after degassing, which is approximately an order of magnitude less than expected given the measured experimental hydrogen capacity. Nitrogen and hydrogen isotherms performed at 75 K also show a marked selectivity for hydrogen over nitrogen for this complex, indicating hidden surface area for hydrogen adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-H. Rogner, Int. J. Hydrogen Energy 23, 833 (1998).

    Article  CAS  Google Scholar 

  2. http://www.eere.energy.gov/hydrogenandfuelcells/mypp/.

  3. http://www.sc.doe.gov/bes/hydrogen.pdf.

  4. A. C. Dillon and M. J. Heben, Appl. Phys. A 72, 133–142 (2001).

    Article  CAS  Google Scholar 

  5. A. C. Dillon, J. L. Blackburn, P. A. Parilla, Y. Zhao, Y.-H. Kim, S. B. Zhang, A. H. Mahan, J. L. Alleman, K. M. Jones, K. E. H. Gilbert, and M. J. Hebern, in Discovering the Mechanism of H2 Adsorption on Aromatic Carbon Nanostructures to Develop Adsorbents for Vehicular Applications, Boston, Massachusetts, 2004 (Materials Research Society), p. 117–124.

  6. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature 386, 377–379 (1997).

    Article  CAS  Google Scholar 

  7. G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, and H. J. Wasserman, J. Am. Chem. Soc. 106, 451–452 (1984).

    Article  CAS  Google Scholar 

  8. G. J. Kubas, J. Organometall. Chem. 635, 37–68 (2001).

    Article  CAS  Google Scholar 

  9. T. Le-Husebo and C. M. Jensen, Inorg. Chem. 32, 3797–3798 (1993).

    Article  CAS  Google Scholar 

  10. J. Niu, K. Rao, and P. Jena, Phys. Rev. Lett. 68, 2277–2280 (1992).

    Article  CAS  Google Scholar 

  11. F. Maseras and A. Lledos, Chem. Rev. 100, 601–636 (2000).

    Article  CAS  Google Scholar 

  12. D. Michael and P. Mingos, J. Organometall. Chem. 635, 1 (2001).

    Article  Google Scholar 

  13. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  14. F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I. M. L. Billas, and T. P. Martin, Phys. Rev. Lett. 77, 3529–3532 (1996).

    Article  CAS  Google Scholar 

  15. Y. Zhao, Y.-H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. 94, 155504 (2005).

    Article  Google Scholar 

  16. F. J. Brady, D. J. Cardin, and M. Domin, J. Organometall. Chem. 491, 169–172 (1995).

    Article  CAS  Google Scholar 

  17. P. J. Fagan, J. C. Calabrese, and B. Malone, Acc. Chem. Res. 25, 134–142 (1992).

    Article  CAS  Google Scholar 

  18. H.-F. Hsu, Y. Du, T. E. Albrecht-Schmitt, S. R. Wlson, and J. R. Shapley, Organometallics 17, 1756–1761 (1998).

    Article  CAS  Google Scholar 

  19. M. M. Olmstead, L. Hao, and A. L. Balch, J. Organometall. Chem. 578, 85–90 (1998).

    Article  Google Scholar 

  20. L.-C. Song, G.-A. Yu, F.-H. Su, and Q.-M. Hu, Organometallics 23, 4192–4198 (2004).

    Article  CAS  Google Scholar 

  21. D. M. Thompson, M. Bengough, and M. C. Baird, Organometallics 21, 4762–4770 (2002).

    Article  CAS  Google Scholar 

  22. M. Sawamura, M. Toganoh, Y. Kuninobu, S. Kato, and E. Nakamura, Chem. Lett. 29, 270 (2000).

    Article  Google Scholar 

  23. Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. 127, 14582–14583 (2005).

    Article  CAS  Google Scholar 

  24. T. Yildirim and S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005).

    Article  CAS  Google Scholar 

  25. C. Engtrakul, M. R. Davis, T. Gennett, A. C. Dillon, K. M. Jones, and M. J. Heben, J. Am. Chem. Soc. 127, 17548–17555 (2005).

    Article  CAS  Google Scholar 

  26. R. J. Madix, in Chemistry and Physics of Solid Surfaces, edited by R. Vanselov (CRC, Boca Raton, 1979), p. 63–72.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitney, E., Dillon, A.C., Curtis, C. et al. Novel Organometallic Fullerene Complexes for Vehicular Hydrogen Storage. MRS Online Proceedings Library 1041, 206 (2007). https://doi.org/10.1557/PROC-1041-R02-06

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1041-R02-06

Navigation