Skip to main content
Log in

Active Polymer Nanoparticles: Delivery of Antibiotics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Antibiotic-encapsulated PLA and PLGA nanoparticles were prepared by the single emulsion-solvent evaporation technique. Different PLA and PLGA systems were prepared, varying the copolymer composition and the amount of the surfactant polyvinyl alcohol. Characterization and drug loading studies were performed by UV-Visible spectrophotometry, dynamic light scattering, and scanning electron microscopy (SEM).

Simultaneously, in order to model the diffusion of the nanoparticles within the osteoblast, QDs such as functionalized InGaP/ZnS and polymer encapsulated InGaP/ZnS nanoparticles were added to confluent cultures of primary mouse osteoblasts. Following PreFer fixation, cultures were examined via confocal microscopy. QDs were clearly visible within osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Soppimath, T. M. Aminadhavi, A. R. Kulkarni, W. E. Rudzinski, “Biodegradable polymeric nanoparticles as drug delivery devices”, J. of Controlled Release, 70, 1–20 (2001).

    Article  CAS  Google Scholar 

  2. C. X. Song, V. Labhasetwar, H. Murphy, X. Qu, W.R. Humphrey, R. J. Shebuski, R. J. Levy, “Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery”, J. of Controlled Release, 43, 197–212 (1997).

    Article  Google Scholar 

  3. J. H. Calhoun, J. T. Mader, “Treatment of Osteomyelitis with a Biodegradable Antibiotic Implant”, Clinical Orthopaedics and Related Research, 341, 206–214 (1997).

    Article  Google Scholar 

  4. T. K. Mandal, L. A. Bostanian, R. A. Graves, S. R. Chapman, “poly(d,l-Lactide-Co-Glycolide) Encapsulated Poly(Vinyl Alcohol) Hydrogel as a drug Delivery System”, Pharmaceutical Research, 19, 1713–1719 (2002).

    Article  CAS  Google Scholar 

  5. T. J. de Faria, A. Machacado de Campos, E. Lemos Senna, “Preparation and Characterization of Poly(D,L-Lactide )(PLA) and Poly(D,L-Lactide)-Poly(Ethylene Glycol) (PLA-PEG) Nanocapsules Containing Antitumoral Agent Methotrexate”, Macromol. Symp”, 229, 228–233 (2005).

    Article  Google Scholar 

  6. A. Lamprecht, N. Ubrich, M. Hombreiro Perez, C. M. Lehr, M. Hoffman, P. Maaincent, “Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification”, International Journal of Pharmaceutics, 184, 97–105 (1999).

    Article  CAS  Google Scholar 

  7. C. E. Astete, C. M. Sabliov, “Synthesis and Characterization of PLGA Nanoparticles”, J. Biomater. Sci. Polymer Edn., 17, 247–289 (2006).

    Article  CAS  Google Scholar 

  8. M. L. Hans, A. M. Lowman, “Biodegradable nanoparticles for drug delivery and targeting”, Solid State & Material Science, 6, 319–327 (2002).

    Article  CAS  Google Scholar 

  9. M. N. V. Ravi Kumar, U. Bakowsky, C. M. Lehr, “Preparation and Characterization of cationic PLGA Nanospheres as DNA carries”, Biomaterials, 25, 1771–1777 (2004).

    Article  CAS  Google Scholar 

  10. C. T. Laurencin, A. M. Attawia, L. Q. Lu, M. D. Borden, H. H. Lu, W. J. Gorum, J. R. Lieberman, “Poly(lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells: a regional gene therapy approach to bone regeneration”, Biomaterials, 22, 1271–1277 (2001).

    Article  CAS  Google Scholar 

  11. K. E. Gonsalves, S. Jin, M. I. Baraton, “Synthesis and surface characterization of functionalized polylactide copolymer microparticles”, Biomaterials, 19, 1501–1505 (1998).

    Article  CAS  Google Scholar 

  12. H. Kwon, J. Lee, S. Choi, Y. Jang, J. Kim, “Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method”, Colloids and Susfaces, 182, 123–130 (2001).

    Article  CAS  Google Scholar 

  13. J. Panyam, V. Labhasetwar, “Biodegradable nanoparticles for drug delivery to cells and tissue”, Advanced Drug Delivery Reviews, 55, 329–347 (2003).

    Article  CAS  Google Scholar 

  14. B. C. Lagerholm, M. Wang, L. A. Ernst, D. H. Ly, H. Liu, M. P. Bruchez, A. S. Waggoner, “Multicolor Coding of Cells with Cationic Peptide Coated Quantum Dots”, Nanoletters, 4, 2019–2022 (2004).

    Article  CAS  Google Scholar 

  15. M. P. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein to Provide New Reagents for Fluoroimmunoassays”, Science, 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  16. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo”, Science, 300, 1434–1436 (2003).

    Article  CAS  Google Scholar 

  17. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates”, Nature Biotechnology, 21, 47–51 (2003).

    Article  CAS  Google Scholar 

  18. S. J. Rosenthal, I. Tomlinson, E. M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Wang, L. J. DeFelice, R. D. Blakely,” Targeting Cell Surface Receptors with Ligand-Conjugated Nanocrystals”, J. Am. Chem. Soc., 124, 4586–4594 (2002).

    Article  CAS  Google Scholar 

  19. J. K. Ellington, M. Harris, L. Webb, B. Smith, T. Smith, K. Tan, M. Hudson, “Intracellular Staphylococcus aureus. A mechanism for the indolence of Osteomyelitis”, J. Bone Joint Surg. Br. 85(6), 918–21 (2003).

    Article  CAS  Google Scholar 

  20. M. Lucke, G. Schmidmaier, S. Sadoni, B. Wildemann, R. Schiller, A. Stemberger, N.P. Haas, M. Raschke., “A new model of implant-related osteomyelitis in rats”. J. Biomed Mater. Res. B Appl. Biomater., 67(1), 593–602 (2003).

    Article  CAS  Google Scholar 

  21. J. K. Ellington, S. S. Reilly, W. K. Ramp, M. S. Smeltzer, J. F. Kellam, M. C. Hudson “Mechanisms of Staphylococcus aureus invasion of cultured osteoblasts”, Microb. Pathog., 26(6), 317–23 (1999).

    Article  CAS  Google Scholar 

  22. E. H. Alexander, F. A. Rivera, I. Marriot, J. Anguita, K. L. Bost, M.C. Hudson, “Staphylococcus aureus-induced tumor necrosis factor-related apoptosis-inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts”. BMC Microbiol, 3, 5 (2003)

    Article  Google Scholar 

  23. L. M. Varela, M. Garcia, M. Perez-Rodriguez, P. Taboada, J. M. Ruso, V. Mosquera,” Multilayer adsorption model for the protein-ligand interaction”, Journal of Chemical Physics, 114(17), 7682–7687 (2001).

    Article  CAS  Google Scholar 

  24. M. Zweers, G. Engbers, D. Grijpma, J. Feijen,” Release of anty-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles”, Journal of Controlled Release, 114(3), 317–324 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabinovich, M., Somayaji, S.N., Pillai, R.R. et al. Active Polymer Nanoparticles: Delivery of Antibiotics. MRS Online Proceedings Library 1019, 506 (2007). https://doi.org/10.1557/PROC-1019-FF05-06

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1019-FF05-06

Navigation