Skip to main content
Log in

Time-Resolved Reflectivity Measurement of the Pressure-Enhanced Crystallization Rate of Amorphous Si in a Diamond Anvil Cell

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have measured the pressure dependence of the solid phase epitaxial growth (SPEG) rate of self-implanted Si (100) by using the in-situ time-resolved reflectivity technique [1] in a hightemperature and high-pressure diamond anvil cell (DAC). With fluid argon as the pressure transmission medium, a clean and perfectly hydrostatic pressure environment is achieved around the sample. The external heating geometry employed in the DAC provides a uniform temperature across the sample. At temperatures in the range of 530 – 550 °C and pressure up to 50 kbars (5 GPa), the growth rate is enhanced by up to a factor of ten over that at 1 atmosphere pressure. The results are characterized by a negative activation volume of approximately −3.0 cm3/mole (−27% of the atomic volume). These preliminary results show a significantly weaker pressure dependence than does the previous work of Nygren et al. [2], who found an activation volume of −8.7 cm3/mole. The implications of these results for the nature of the defect responsible for thermal SPEG and irradiation enhanced SPEG is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Olson, S. A. Kokorowski, J. A. Roth, and L. D. Hess, in Mat. Res. Soc. Symp. Proc. 13, 141 (1983).

    Article  CAS  Google Scholar 

  2. E. Nygren, M. J. Aziz, D. Turnbull, J. M. Poate, D. C. Jacobson, and R. Hull, Appl. Phys. Lett., 41, 232(1985).

    Article  CAS  Google Scholar 

  3. V. J. Fratello, J. F. Hays, and D. Turnbull, J. Appl. Phys. 51, 4718 (1980).

    Article  CAS  Google Scholar 

  4. A. S. Vasin, V. I. Okulich, V. A. Panteleev, and D. I. Tetel’baum, Sov. Phys. Solid State 27, 168 (1985).

    Google Scholar 

  5. C. Licoppe and H. Savary, Appl. Phys. Lett. 51, 740 (1987).

    Article  CAS  Google Scholar 

  6. G. L. Olson, S. A. Kokorowski, R. A. McFarlane, and L. D. Hess, Appl. Phys. Lett. 37, 1019 (1980).

    Article  Google Scholar 

  7. G. J. Piermarini and S. Block, Rev. Sci. Instrum. 46, 973 (1975).

    Article  CAS  Google Scholar 

  8. R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, Science 176, 284 (1972).

    Article  CAS  Google Scholar 

  9. G. Lulli, P.G. Merli, and M. Vittori Antisari, these proceedings (Mat. Res. Soc. Symp. Proc. 100 (1988).)

  10. A. La Ferla, E. Rimini, S. Cannavo, and G. Ferla, these proceedings (Mat. Res. Soc. Symp. Proc. 100 (1988).)

  11. S. T. Pantelides, these proceedings (Mat. Res. Soc. Symp. Proc. 100 (1988).)

  12. L. E. Mosley and M. A. Paesler, these proceedings (Mat. Res. Soc. Symp. Proc. 100 (1988).)

  13. F. Spaepen and D. Turnbull, AIP Conf. Proc. 50, 73 (1979).

    Article  CAS  Google Scholar 

  14. J. Linnros, B. Svensson and G. Holmdén, Phys. Rev. B30, 3629 (1984).

    Article  Google Scholar 

  15. J.S. Williams, R.G. Elliman, W.L. Brown and T.E. Seidel, Phys. Rev. Lett. 55, 1482 (1985).

    Article  CAS  Google Scholar 

  16. A. Scholz and A. Seeger, Phys. Stat. Sol. 3, 1480 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, G.Q., Nygren, E., Aziz, M.J. et al. Time-Resolved Reflectivity Measurement of the Pressure-Enhanced Crystallization Rate of Amorphous Si in a Diamond Anvil Cell. MRS Online Proceedings Library 100, 435 (1987). https://doi.org/10.1557/PROC-100-435

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-100-435

Navigation