Skip to main content
Log in

Perspectives on an Advanced Hydrogen Storage System: Platinum-Carbon Nanotube Nanocomposite Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Transition-metal functionalized-carbon nanotubes (CNTs) represent an important genre of hydrogen storage systems that exhibit superior storage capacity and improved storage kinetics when compared with the pristine CNTs. Here, we compare the reversible gravimetric hydrogen storage capacity of platinum-functionalized CNTs with that of pristine tubes, both measured at 300 K and an equilibrium hydrogen pressure of 1.67 MPa. The maximum reversible hydrogen storage capacity exhibited by the nano-composite material is found to be 3.2 ± 0.1 wt%, which is a nearly 50 % enhancement when compared with that of the pristine tubes. The enhanced hydrogen storage capacity of functionalized CNTs is attributed to the spill-over phenomena as suggested by the estimated storage capacity of Pt phase. The hydrogen storage in Pt nanoparticles modeled using the atomic magic number calculation and Pt hydride stoichiometry of PtH4 also suggests that nearly 15 closed shells of Pt atoms reversibly adsorb and spill hydrogen on to CNT binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fichtner, Adv. Eng. Mater. 7, (2005) 443.

    Article  CAS  Google Scholar 

  2. M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G.S. Duesberg, Y.-M. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek, P. Bernier, Appl. Phys. A 72, 129 (2001).

    Article  CAS  Google Scholar 

  3. Y. Zhao, Y. –H. Kim, A. C. Dillon, M. J. Heben and S. B Zhang, Phys. Rev. Lett. 94, 155504 (2005).

    Article  Google Scholar 

  4. T. Yildirim and S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005).

    Article  CAS  Google Scholar 

  5. T. Yildirim, J. Íñiguez and S. Ciraci, Phys. Rev. B 72, 153403 (2005).

    Article  Google Scholar 

  6. R. Zacharia, K.Y. Kim, A.K.M. Fazle Kibria and K.S. Nahm, Chem. Phys. Lett. 412, 369 (2005).

    Article  CAS  Google Scholar 

  7. S. Dag, Y. Ozturk, S. Ciraci and T. Yildirim, Phys. Rev. B 72, 155404 (2005).

    Article  Google Scholar 

  8. A. Lueking and R.T. Yang, J. Catal. 206, 165 (2002).

    Article  CAS  Google Scholar 

  9. G.J. Kubas, J. Organomet. Chem. 635, 37 (2001).

    Article  CAS  Google Scholar 

  10. G.J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini and H. J. Wasserman, J. Am. Chem. Soc. 106 451 (1984).

    Article  CAS  Google Scholar 

  11. A.J. Lachawiec, G. Qi, R.T. Yang, Langmuir 21, 11418 (2005).

    Article  CAS  Google Scholar 

  12. F.H. Yang, A.J. Lachawiec, R.T. Yang, J. Phys. Chem. B 110, 6236 (2006).

    Article  CAS  Google Scholar 

  13. U. Roland, T. Braunschweig, F. Roessner, J. Mol. Catal. A-Chem. 127, 61 (1997).

    Article  CAS  Google Scholar 

  14. E. Yoo, L. Gao, T. Komatsu, N. Yagai, K. Arai, T. Yamazaki, K. Matsuishi, T. Matsumoto, J. Nakamura, J. Phys. Chem. B 108, 18903 (2004).

    Article  CAS  Google Scholar 

  15. V.Y. Davydov, N. Sheppard, E. Osawa, Int. J. Hydrogen Energy 29, 1157 (2004).

    CAS  Google Scholar 

  16. Q. Sun, Q. Wang, P. Jena and Y. Kawazoe, J. Am. Chem. Soc. 127, 14582 (2005).

    Article  CAS  Google Scholar 

  17. N. Pierard, A. Fonseca, J.–F. Colomer, C. Bossout, J.–M. Benoit, G. Van Tendeloo, J.-P. Pirard and J.B. Naggy, Carbon 42, 1691 (2004).

    Article  CAS  Google Scholar 

  18. Y. Duan and J. Li, Mater. Chem. Phys. 87, 452 (2004).

    Article  CAS  Google Scholar 

  19. E. Zhang, X.M. Ni, H.G. Zheng, Y. Li, X.J. Zhang and Z.P. Yang, Mater. Lett. 59, 2011 (2005).

    Article  CAS  Google Scholar 

  20. P. Andreazza, C. Andreazza-Vignole, J.P. Rosenbaum, A.-L. Thomann and P. Brault, Surf. Coat. Tech. 151–152, 122 (2002).

    Article  Google Scholar 

  21. S.R.C. Vivekchand, A. Govindaraj, M. Motin Seikh, C.N.R. Rao, J. Phys. Chem. B 108, 6935 (2004).

    Article  CAS  Google Scholar 

  22. R. Zacharia, K.Y. Kim, S.W. Hwang, K.S. Nahm, Catal. Today (2006) doi:10.1016/j.cattod.2006.09.026

  23. J.-U. Sachse, J. Weber and E.Ö. Sveinbjörnsson, Phys. Rev. B 60, 1474 (1999).

    Article  CAS  Google Scholar 

  24. A.L. Mackay, Acta Cryst. 15, 916 (1962).

    Article  CAS  Google Scholar 

  25. G. Schmid, N. Klein, B. Morun and A. Lehnert, Pure Appl. Chem. 62, 1175 (1990).

    Article  CAS  Google Scholar 

  26. R. van Hardeveld and F. Hartog, Surf. Sci. 15, 189 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacharia, R., Rather, Su., Hwang, S.W. et al. Perspectives on an Advanced Hydrogen Storage System: Platinum-Carbon Nanotube Nanocomposite Materials. MRS Online Proceedings Library 973, 301 (2006). https://doi.org/10.1557/PROC-0973-BB03-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0973-BB03-01

Navigation