Skip to main content
Log in

Photoluminescence Excitation Dependence in Three-dimensional Si/SiGe Nanostructures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We find that in SiGe clusters grown on Si using Stranski-Krastanov (S-K) growth mode, (i) photoluminescence (PL) spectra, (ii) PL lifetime and (iii) PL thermal quench activation energies exhibit strong dependence on the excitation intensity. Under PL excitation intensity increasing from 1 to 104 W/cm2, the PL spectra exhibit blue shift from below Ge bandgap up to ∼970 meV. The PL lifetime shows strong dependence on the excitation wavelength, decreasing from 20 μs at ∼0.8 eV to 200 ns at ∼ 0.9 eV. The process of PL thermal quench has two clearly distinguished activation energies. At low temperature, small (∼15 meV) and excitation-independent activation energy is attributed to exciton thermal dissociation. At higher temperature, excitation-dependent PL thermal quench activation energy (increasing from ∼ 120 to 340 meV as excitation intensity increases) is found, and it is attributed to hole redistribution via tunneling and/or thermal ionization over the Si/SiGe valence band energy barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Shiraki, H. Sunamura, N. Usami, and S. Fukatsu, Appl. Surf. Sci. 102, 263 (1996).

    Article  CAS  Google Scholar 

  2. B. V. Kamenev, E.-K. Lee, H.-Y. Chang, H. Han, H. Grebel, L. Tsybeskov, and T. I. Kamins, Appl. Phys. Lett. 89, 153106 (2006).

    Article  Google Scholar 

  3. B. V. Kamenev, L. Tsybeskov, J.-M Baribeau, and D. J. Lockwood, Phys. Rev. B 72, 193306 (2005).

    Article  Google Scholar 

  4. L. C. Lenchyshyn, M. L. W. Thewalts, J. C. Sturm, P. V. Schwartz, E. J. Prinz, N. L. Rowell, J.-P. Noël, and D. C. Houghton, Appl. Phys. Lett. 60, 3174 (1992).

    Article  CAS  Google Scholar 

  5. S. S. Iyer, Y.-H. Xie, Science 260, 40 (1993).

    Article  CAS  Google Scholar 

  6. M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, H. Lafontaine, Phys. Rev. Lett. 79, 2 (1997).

    Article  Google Scholar 

  7. O. G. Shmidt, C. Lange, and K. Eberl, Appl. Phys. Lett. 75, 1905 (1999).

    Article  Google Scholar 

  8. J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 78, 1763 (2001).

    Article  CAS  Google Scholar 

  9. J. Weber, and M. I. Alonso, Phys. Rev. B 40, 5683 (1989).

    Article  CAS  Google Scholar 

  10. P. Lautenschlager, P. B. Allen, and M. Cardona, Phys. Rev. B 31, 2163 (1985).

    Article  CAS  Google Scholar 

  11. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Appl. Phys. Lett. 71, 258 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, EK., Kamenev, B.V., Kamins, T.I. et al. Photoluminescence Excitation Dependence in Three-dimensional Si/SiGe Nanostructures. MRS Online Proceedings Library 958, 305 (2006). https://doi.org/10.1557/PROC-0958-L03-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0958-L03-05

Navigation