Skip to main content
Log in

Plasma Synthesis and Surface Passivation of Silicon Quantum Dots with Photoluminescence Quantum Yields higher than 60%

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Silicon nanocrystals with diameters of less than 5 nm show efficient room temperature pho-toluminescence (PL). Previous reports of PL quantum yields for ensembles of silicon quantum dots have usually been in the few percent range, and generally less than 30%. Here we report the plasma synthesis of silicon quantum dots and their subsequent wet-chemical surface passivation with organic ligands while strictly excluding oxygen. Photoluminescence quantum yields as high as 62have been achieved at peak wavelengths of about 789 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Brus, P.J. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler, and P.H. Citrin, J. Am. Chem. Soc. 117: 2915–2922 (1995).

    Article  CAS  Google Scholar 

  2. S. Furukawa and T. Miyasato, Jpn. J. Appl. Phys. 27(11): L2207 (1988).

    Article  CAS  Google Scholar 

  3. A.G. Cullis and L.T. Canham, Nature. 335: 335–338 (1991).

    Article  Google Scholar 

  4. C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B. 64(19): 193402 (2001).

    Article  Google Scholar 

  5. M.A. Hines and P. Guyot-Sionnest, Journal of Physical Chemistry. 100(2): 468–471 (1996).

    Article  CAS  Google Scholar 

  6. D.J. Norris, A. Sacra, C.B. Murray, and M.G. Bawendi, Physical review letters. 72(16): 2612–2615 (1994).

    Article  CAS  Google Scholar 

  7. D.V. Talapin, I. Mekis, S. Goetzinger, A. Kornowski, O. Denson, and H. Weller, Journal of Physical Chemistry. 108(49): 18826–18831 (2004).

    Article  CAS  Google Scholar 

  8. I. Mekis, D.V. Talapin, A. Kornowski, M. Haase, and H. Weller, Journal of Physical Chemistry B. 107(30): 7454–7462 (2003).

    Article  CAS  Google Scholar 

  9. P. Reiss, J. Bleuse, and A. Pron, Nano Letters. 2(7): 781–784 (2002).

    Article  CAS  Google Scholar 

  10. K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, and L.E. Brus, J. Phys. Chem. 97: 1224–1230 (1993).

    Article  CAS  Google Scholar 

  11. J.P. Wilcoxon, G.A. Samara, and P.N. Provencio, Phys. Rev. B. 60(4): 2704–2714 (1999).

    Article  CAS  Google Scholar 

  12. X. Li, Y. He, S.S. Talukdar, and M.T. Swihart, Langmuir. 19(20): 8490–8496 (2003).

    Article  CAS  Google Scholar 

  13. G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, Applied Physics Letters.80(25): 4834–4836 (2002).

    Article  CAS  Google Scholar 

  14. J.D. Holmes, K.J. Ziegler, C. Doty, L.E. Pell, K.P. Johnston, and B.A. Korgel, J. Am. Chem. Soc. 123: 3743–3748 (2001).

    Article  CAS  Google Scholar 

  15. R.M. Sankaran, D. Holunga, R.C. Flagan, and K.P. Giapis, Nano Letters. 5(3): 531–535 (2005).

    Article  Google Scholar 

  16. G.M. Credo, M.D. Mason, and S.K. Buratto, Applied Physics Letters. 74(14): 1978–1980 (1999).

    Article  CAS  Google Scholar 

  17. I. Vasiliev, S. Ogut, and J.R. Chelikowsky, Physical Review Letters. 86(9): 1813–1816 (2001).

    Article  CAS  Google Scholar 

  18. I. Vasiliev, J.R. Chelikowsky, and R.M. Martin, Physical Review B (Condensed Matter and Materials Physics). 65(12): 121302 (2002).

    Article  Google Scholar 

  19. Z. Zhou, L. Brus, and R. Friesner, Nano Letters. 3(2): 163–167 (2003).

    Article  CAS  Google Scholar 

  20. Z. Zhou, R.A. Friesner, and L. Brus, Journal of the American Chemical Society. 125: 15599–15607 (2003).

    Article  CAS  Google Scholar 

  21. A. Puzder, A.J. Williamson, J.C. Grossman, and G. Galli, Journal of the American Chemical Society. 125(9): 2786–2791 (2003).

    Article  CAS  Google Scholar 

  22. F.A. Reboredo and G. Galli, Journal of Physical Chemistry B. 109(3): 1072–1078 (2005).

    Article  CAS  Google Scholar 

  23. R.J. Walters, J. Kalkman, A. Polman, H.A. Atwater, and M.J.A. de Dood, Physical Review B. 73(13): 132302 (2006).

    Article  Google Scholar 

  24. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82(1): 197 (1999).

    Article  CAS  Google Scholar 

  25. L. Mangolini, E. Thimsen, and U. Kortshagen, Nano Letters. 5(4): 655–659 (2005).

    Article  CAS  Google Scholar 

  26. J.M. Buriak, Chemical Reviews. 102(5): 1271–1308 (2002).

    Article  CAS  Google Scholar 

  27. L.H. Lie, M. Duerdin, E.M. Tuite, A. Houlton, and B.R. Horrocks, J. Electroanal. Chem. 538–539: 183–190 (2002).

    Article  Google Scholar 

  28. F. Hua, M.T. Swihart, and E. Ruckenstein, Langmuir. 21(13): 6054–6062 (2005).

    Article  CAS  Google Scholar 

  29. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Physical Review B. 62(23): 15942–51 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangolini, L., Jurbergs, D., Rogojina, E. et al. Plasma Synthesis and Surface Passivation of Silicon Quantum Dots with Photoluminescence Quantum Yields higher than 60%. MRS Online Proceedings Library 934, 104 (2006). https://doi.org/10.1557/PROC-0934-I01-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0934-I01-04

Navigation