Skip to main content
Log in

Atomistic modeling of elasticity, plasticity and fracture of protein crystals

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The structure and behavior of proteins plays an overarching role in determining their function in biological systems. In recent years, proteins have also been proposed as basis for new materials to be used in technological applications (Langer and Tirrell, Nature, 2004). It is known that protein crystals show very interesting mechanical behavior, as some of them are extremely fragile, while others can be quite sturdy. However, unlike other crystalline materials like silicon or copper, the mechanical properties of protein crystals have rarely been studied by atomistic computer modeling. As a first step towards more fundamental understanding of the mechanics of those materials, we report atomistic studies of mechanical properties of protein crystals using empirical potentials focusing on elasticity, plasticity and fracture behavior. Here we consider the mechanics of a small protein α-conotoxin PnIB from conus pennaceus. We use large-scale atomistic simulations to determine the low-strain elastic constants for different crystallographic orientations. We also study large-strain elastic properties including plastic deformation. Furthermore, we perform systematic studies of the effect of mutations on the elastic properties of the protein crystal. Our results indicate a strong impact of mutations on elastic properties, showing the potential of mutations to tailor mechanical properties. We conclude with a study of mode I fracture of protein crystals, relating our atomistic modeling results with Griffith's theory of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Hu, J. Gehrmann, L. W. Guddat, P. F. Alewood, D. Craik, J. L. Martin, Structure 4 (1996) 417–423.

    Article  CAS  Google Scholar 

  2. R. Langer, D. A. Tirrell, Nature 428 (2004) 487–492.

    Article  CAS  Google Scholar 

  3. W. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz, D. A. Tirrell, Science 281 (1998) 389–392.

    Article  CAS  Google Scholar 

  4. D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham, S. Debolt, D. Ferguson, G. Seibel, P. Kollman, Computer Physics Communications 91 (1995) 1–41.

    Article  CAS  Google Scholar 

  5. M. T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. V. Kale, R. D. Skeel, K. Schulten, International Journal Of Supercomputer Applications And High Performance Computing 10 (1996) 251–268.

    Article  Google Scholar 

  6. D. H. Tsai, J. of Chemical Physics 70 (1979) 1375–1382.

    Article  CAS  Google Scholar 

  7. M. Zhou, Phil. Mag. A 82 (2002).

  8. B. deCelis, A. S. Argon, S. Yip, J. Appl. Phys. 54 (1983) 4864–4878.

    Article  CAS  Google Scholar 

  9. K. S. Cheung, S. Yip, Modelling Simul. Mater. Eng. 2 (1993) 865–892.

    Article  Google Scholar 

  10. M. J. Buehler, F. F. Abraham, H. Gao, Nature 426 (2003) 141–146.

    Article  CAS  Google Scholar 

  11. F. F. Abraham, D. Brodbeck, W. E. Rudge, X. Xu, J. Mech. Phys. Solids 45 (1997) 1595–1619.

    Article  CAS  Google Scholar 

  12. F. F. Abraham, D. Brodbeck, R. A. Rafey, W. E. Rudge, Phys. Rev. Lett. 73 (1994) 272–275.

    Article  CAS  Google Scholar 

  13. M. J. Buehler, H. Gao, Nature (2006).

  14. H. Gao, B. Ji, M. J. Buehler, H. Yao, Mechanics & Chemistry of Biosystems 1 (2004) 37–52.

    Google Scholar 

  15. H. Gao, B. Ji, I. L. Jäger, E. Arzt, P. Fratzl, P. Natl. Acad. Sci. USA 100 (2003) 5597–5600.

    Article  CAS  Google Scholar 

  16. A. C. T. v. Duin, S. Dasgupta, F. Lorant, W. A. Goddard, J. Phys. Chem. A 105 (2001) 9396–9409.

    Article  Google Scholar 

  17. C. L. Caylor, S. Speziale, S. Kriminski, T. Duffy, C. S. Zha, R. E. Thorne, Journal of Crystal Growth 232 (2001) 498.

    Article  CAS  Google Scholar 

  18. S. Speziale, F. Jiang, C. L. Caylor, S. Kriminski, C. S. Zha, R. E. Thorne, T. S. Duffy, Biophysical Journal 85 (2003) 3202–3213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buehler, M. Atomistic modeling of elasticity, plasticity and fracture of protein crystals. MRS Online Proceedings Library 898, 1003 (2005). https://doi.org/10.1557/PROC-0898-L10-03

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0898-L10-03

Navigation