Skip to main content
Log in

Fatigue Microdamage in Bovine Cortical Bone Imaged by Micro-Computed Tomography Using a Barium Sulfate Contrast Agent

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. A non-destructive, three-dimensional technique is needed to measure the spatial density of microdamage accumulation. Therefore, the objective of this study was to image microdamage accumulation in cortical bone during fatigue using micro-computed tomography (micro-CT) with a barium sulfate (BaSO4) contrast agent. Bovine cortical bone beams were loaded under four-point bending fatigue. Two symmetric notches were machined on the tensile surface in order to generate damage at the stress concentrations during loading. Specimens were loaded to a specified number of cycles or until one notch fractured, such that the other notch exhibited accumulated microdamage just prior to fracture. Microdamage ahead of the notch was stained by precipitation of BaSO4 and imaged using micro-CT. Reconstructed images showed a distinct region of bright voxels around the notch tip or along propagating cracks due to the presence of BaSO4, which was verified by backscattered electron imaging and energy dispersive spectroscopy. The stained region exhibited a characteristic kidney shape perpendicular to the notch tip, which was correlated to principal strain contours calculated by finite element analysis. The area of stained regions was positively correlated with the number of loading cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.S.S. Jee, in Bone Mechanics Handbook, edited by S. C. Cowin (CRC Press, Boca Raton, 2001) pp. 1.1–1.2.

    Google Scholar 

  2. D.B. Burr, M.R. Forwood, D.P. Fyhrie, R.B. Martin, M.B. Schaffler and C.H. Turner, J Bone Miner Res. 12, 6–15 (1997).

    Article  CAS  Google Scholar 

  3. R.B. Martin, Calcif Tissue Int. 73, 101–107 (2003).

    Article  CAS  Google Scholar 

  4. M.B. Schaffler, E.L. Radin and D.B. Burr, Bone. 10, 207–214 (1989).

    Article  CAS  Google Scholar 

  5. K.J. Jepsen and D.T. Davy, J Biomechanics. 30, 891–894 (1997).

    Article  CAS  Google Scholar 

  6. R.B. Martin and D.B. Burr, J Biomechanics. 15, 137–139 (1982).

    Article  CAS  Google Scholar 

  7. D.B. Burr, R.B. Martin, M.B. Schaffler and E.L. Radin, J Biomechanics. 18, 189–200 (1985).

    Article  CAS  Google Scholar 

  8. S. Mori and D.B. Burr, Bone. 14, 103–109 (1993).

    Article  CAS  Google Scholar 

  9. D.B. Burr and T. Stafford, Clin Orthop Rel Res. 260, 305–308 (1990).

    Article  Google Scholar 

  10. T.C. Lee, T.L. Arthur, L.J. Gibson and W.C. Hayes, J Orthop Res. 18, 322–325 (2000).

    Article  CAS  Google Scholar 

  11. F.J. O’Brien, D. Taylor and T.C. Lee, J Biomechanics. 35, 523–526 (2002).

    Article  Google Scholar 

  12. F.J. O’Brien, D. Taylor and T.C. Lee, J Biomechanics. 36, 973–980 (2003).

    Article  Google Scholar 

  13. M.B. Schaffler, W. Pitchford, K. Choi and J.M. Riddle, Bone. 15, 483–488 (1994).

    Article  CAS  Google Scholar 

  14. P. Zioupos and J.D. Currey, J Biomechanics. 27, 993–5 (1994).

    Article  CAS  Google Scholar 

  15. F.J. O’Brien, D. Taylor, G.R. Dickson, and T.C. Lee, J Anat. 197, 413–420 (2000).

    Article  Google Scholar 

  16. J. Li, M.A. Miller, G.D. Hutchins and D.B. Burr, Trans Orthop Res Soc. 30, 33 (2005).

    CAS  Google Scholar 

  17. H. Leng, J.J. VanDersarl, G.L. Niebur and R.K. Roeder, Trans Orthop Res Soc. 30, 665 (2005).

    Google Scholar 

  18. D.B. Masse, X. Wang, R.K. Roeder and G.L. Niebur, Trans Orthop Res Soc. 30, 35 (2005).

    Google Scholar 

  19. R.K. Nalla, J.H. Kinney and R.O. Ritchie, Nature Mater. 2, 164–168 (2003).

    Article  CAS  Google Scholar 

  20. R.K. Nalla, J.J. Kruzic, J.H. Kinney and R.O. Ritchie, Bone. 35, 1240–1246 (2004).

    Article  CAS  Google Scholar 

  21. O.S. Sobelman, J.C. Gibeling, S.M. Stover, S.J. Hazelwood, O.C. Yeh, D.R. Shelton and R.B. Martin, J Biomechanics. 37, 1295–1303 (2004).

    Article  CAS  Google Scholar 

  22. D.T. Reilly and A.H. Burstein, J Bone Joint Surg. 56, 1001–1022 (1974).

    Article  CAS  Google Scholar 

  23. J.D. Currey, in Bone Mechanics Handbook, edited by S. C. Cowin (CRC Press, Boca Raton, 2001) pp. 19.1–19.4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, H., Wang, X., Niebur, G. et al. Fatigue Microdamage in Bovine Cortical Bone Imaged by Micro-Computed Tomography Using a Barium Sulfate Contrast Agent. MRS Online Proceedings Library 898, 904 (2005). https://doi.org/10.1557/PROC-0898-L09-04

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0898-L09-04

Navigation