Skip to main content
Log in

Local Mineral and Matrix Changes Associated with Bone Adaptation and Microdamage

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Skeletal fractures represent a significant medical and economic burden for society. It is generally thought that a high incidence of musculoskeletal fatigue loading results in damage accumulation at too high of a rate to be efficiently remodeled, leading to skeletal fracture. The state of damage in bone at a given time is therefore the net result of damage and repair processes, and is dependent upon extrinsic factors such as mechanical history, but also upon intrinsic factors, such as composition of bone mineral and matrix. In this invited paper, we review investigations on the coupling of Raman spectroscopy with mechanical loading of bone, providing insight into mechanisms of ultrastructural deformation in bone at smaller scales than previously understood. We also present new data showing that in-vivo mechanical loading results in increased resistance to fatigue damage, coupled with an increase in phosphate to amide I ratio and decrease in carbonate to phosphate ratio. Taken together, the data demonstrates the ability to modulate the mechanical and chemical properties of bone via exogenous mechanical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hui, C. Slemenda and C. Johnston, J. Clin. Inv. 81, 1804 (1988).

    Article  CAS  Google Scholar 

  2. D.B. Burr, Exer. Sci. Sports Rev. 25, 171 (1997).

    CAS  Google Scholar 

  3. National Osteoporosis Foundation, Annual Report (2001).

  4. Musculoskeletal Fatigue and Stress Fractures, ed. D.B. Burr and C. Milgrom (CRC Press, 2001).

  5. T.J. Beck, C.B. Ruff and R.A. Shaffer, Bone 27, 437 (2000).

    Article  Google Scholar 

  6. R.B. Martin, D.B. Burr and N.A. Sharkey, Skeletal Tissue Mechanics (Springer Verlag, 1998).

  7. A.L. Boskey, T.M. Wright and R.D. Blank, J. Bone Miner. Res. 14, 330 (1999).

    Article  CAS  Google Scholar 

  8. D.B. Burr, Bone 31, 1 (2002).

    Article  Google Scholar 

  9. J.M. Wallace, M.S. Ron and D.H. Kohn, in Proc. 2005 Summer Bioeng. Conf. Vail, CO. (2005).

  10. M.R. Forwood and A.W. Parker, Bone Miner. 13, 35 (1991).

    Article  CAS  Google Scholar 

  11. Y. Kodama, Y. Umemura, S. Nagasawa, W.G. Beamer, L.R. Donahue, C.R. Rosen, D.J. Baylink and J.R. Farley, Calcif. Tissue Int. 66, 298 (2000).

    Article  CAS  Google Scholar 

  12. C.H. Turner, M.R. Forwood, J.Y. Rho and T. Yoshikawa, J. Bone Miner. Res. 9, 87 (1994).

    Article  CAS  Google Scholar 

  13. S.J. Warden, J.A. Hurst, M.S. Sanders, C.H. Turner, D.B. Burr and J. Li, J. Bone Min. Res. 20, 809 (2005).

    Article  Google Scholar 

  14. J.A. Timlin, A. Carden, M.D. Morris, R.M. Rajachar and D.H. Kohn, Anal. Chem. 72, 2229 (2000).

    Article  CAS  Google Scholar 

  15. A. Carden, M.D. Morris, R.M. Rajachar and D.H. Kohn, Calcif. Tissue Int. 72, 166 (2003).

    Article  CAS  Google Scholar 

  16. O. de Carmejane, M.D. Morris, M.K. Davis, L. Stixrude, M. Tecklenburg, R.M. Rajachar and D.H. Kohn, Calcif. Tissue Int. 76, 207 (2005).

    Article  CAS  Google Scholar 

  17. J.M. Wallace, R.M. Rajachar, X.-D.Chen, S. Shi, M.R. Allen, S.A. Bloomfield, C.M. Les, P.G. Robey. M.F. Young and D.H. Kohn, Bone, (2006).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, D., Sahar, N., Hong, S. et al. Local Mineral and Matrix Changes Associated with Bone Adaptation and Microdamage. MRS Online Proceedings Library 898, 903 (2005). https://doi.org/10.1557/PROC-0898-L09-03

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0898-L09-03

Navigation