Skip to main content
Log in

Macro- and Micro-Scale Probing of the Mechanical Properties of DNA-Crosslinked Gels Using Embedded Inclusions

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Mechanical properties of a class of self-assembling hydrogels based on DNA hybridization were studied using rigid, embedded inclusions. Because inclusions can be deflected without direct contact with a manipulator (e.g., magnet) once they are embedded within the subject material, the measurement technique is well suited for monitoring instantaneous and time-varying changes in the mechanical properties of active materials as they respond to external stimuli. In gels crosslinked with complementary strands of oligonucleotides, hybridization chemistry and strand displacement mechanisms allow reversible assembly, shape change, and large changes in compliance through the application of particular strands of DNA. In earlier work using large (diameter ∼0.8 mm) magnetic beads, the scaling behavior of the global elastic modulus with crosslink density was determined. More recently, it was shown that a threefold increase in stiffness was possible by generating prestress in the DNA-crosslinked gel network. Currently, the gels are functionalized to support cell attachment and embedded with micro-fabricated nickel bars. Through the measurement of local elastic and shear moduli as well as Poisson’s ratios, cell-substrate interactions can be used as a means of evaluating the potential of DNA-crosslinked gels as active cellular engineering substrates and tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Pelham, Jr. and Y. Wang. Proc. Natl. Acad. Sci. U. S. A. 94, 13661 (1997).

    Article  CAS  Google Scholar 

  2. H. B. Wang, M. Dembo and Y. L. Wang. Am. J. Physiol. Cell Physiol. 279, C1345 (2000).

    Article  CAS  Google Scholar 

  3. K. A. Beningo and Y. L. Wang. J. Cell Sci. 115, 849 (2002).

    CAS  Google Scholar 

  4. J. Y. Wong, A. Velasco, P. Rajagopalan and Q. Pham. Langmuir 19, 1908 (2003).

    Article  CAS  Google Scholar 

  5. A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin and D. Discher. Biophys. J. 86, 617 (2004).

    Article  CAS  Google Scholar 

  6. E. J. Semler, P. A. Lancin, A. Dasgupta and P. V. Moghe. Biotechnol. Bioeng. 89, 296 (2004).

    Article  Google Scholar 

  7. L. A. Flanagan, Y. Ju, B. Marg, M. Osterfield and P. A. Janmey. Neuroreport 13, 2411 (2002).

    Article  Google Scholar 

  8. F. Horkay and M. Zrinyi. Macromolecules 15, 1306 (1982).

    Article  CAS  Google Scholar 

  9. M. Radmacher, M. Fritz and P. K. Hansma. Biophys. J. 69, 264 (1995).

    Article  CAS  Google Scholar 

  10. S. Nagahara and T. Matsuda. Polym. Gels Networks 4, 111 (1996).

    Article  CAS  Google Scholar 

  11. D. C. Lin, B. Yurke and N. A. Langrana. J. Biomech. Eng. 126, 104 (2004).

    Article  Google Scholar 

  12. D. C. Lin, B. Yurke and N. A. Langrana. J. Mat. Res. 20, 1456 (2005).

    Article  CAS  Google Scholar 

  13. D. C. Lin, B. Yurke and N. A. Langrana. J. Biomech. Eng. 127, 571 (2005).

    Article  Google Scholar 

  14. A. I. Lur’e. Mekhanika Tverdogo Tela 2, 80 (1967).

    Google Scholar 

  15. F. Amblard, B. Yurke, A. Pargellis and S. Leibler. Rev. Sci. Instrum. 67, 818 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, D., Yurke, B., Shreiber, D. et al. Macro- and Micro-Scale Probing of the Mechanical Properties of DNA-Crosslinked Gels Using Embedded Inclusions. MRS Online Proceedings Library 897, 202 (2005). https://doi.org/10.1557/PROC-0897-J02-02

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0897-J02-02

Navigation