Skip to main content
Log in

Effects of Antimony on the Thermoelectric Properties of the Cubic Pb9.6SbyTe10-xSexMaterials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The thermoelectric properties of Pb9.6SbyTe10−xSex were investigated in the intermediate temperature range of 300 – 700 K. The effect of the variation of Sb content (y) on the electronic properties of the materials is remarkable. Samples with compositions Pb9.6Sb0.2Te10−xSex (y = 0.2) show the best combination of low thermal conductivity with moderate electrical conductivity and thermopower. For Pb9.6Sb0.2Te8Se2 (x = 2) a maximum figure of merit of ZT ∼ 1.1 was obtained around 700 K. This value is nearly 1.4 times higher than that of PbTe at 700 K. This enhancement of the figure of merit of Pb9.6Sb0.2Te8Se2 derives from its extremely low thermal conductivity (∼0.7 at W/m.K at 700 K). High resolution transmission electron microscopy of Pb9.6Sb0.2Te10−xSex samples shows broadly distributed Sb-rich nanocrystals, which may be the key feature responsible for the suppression of the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Kanatzidis, Semicond. Semimet. 69, 51–100 (2000).

    Article  Google Scholar 

  2. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik and N. El-Masry, J. Cryst. Growth. 170, 817–821 (1997).

    Article  CAS  Google Scholar 

  3. T. C. Harman, D. L. Spears and M. J. Manfra, J. Electron. Mater. 25, 1121–1127 (1996).

    Article  CAS  Google Scholar 

  4. M. Aigle, et al. Phys. Rev. B, 64, 35316 (2001).

    Article  Google Scholar 

  5. T. C. Harman, D. L. Spears and M. P. Walsh, J. Electron. Mater. 28, L1–L4 (1999).

    Article  CAS  Google Scholar 

  6. T. C. Harman, P. J. Taylor, D. L. Spears and M. P. Walsh, 18th International conference on Thermoelectrics, 280–284 (1999).

  7. T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, Science, 297, 2229–2232 (2002).

    Article  CAS  Google Scholar 

  8. Z. M. Dashevsky, P. Dariel, and S. Shusterman, Semiconductor Physic, Quantum Electronics and Optoelectronics, 3, 181–184 (2000).

    Article  CAS  Google Scholar 

  9. M. Orihashi, Y. Noda, L.-D. Chen, T. Goto and T. Hirai, J. Phys. Chem. Solids, 61, 919–923 (2000).

    Article  CAS  Google Scholar 

  10. S. Loo, J. Short, K. -F. Hsu, M. G. Kanatzidis and T. Hogan, Mat. Res. Soc. Symp. Proc. 793, S9.4.1–9 (2004).

    Google Scholar 

  11. T. C. Harman, P. J. Taylor, D. L. Spears and M. P. Walsh, J. Electron. Mater. Lett. 29, L1–L4 (2000).

    Article  CAS  Google Scholar 

  12. A. F. Ioffe, Can. J. Phys. 34, 1342 (1956).

    Article  CAS  Google Scholar 

  13. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis, Science, 303, 818–821 (2004).

    Article  CAS  Google Scholar 

  14. A. Khitun, K. L. Wang and G. Chen, Nanotechnology, 11 (4), 327–331 (2000);

    Article  CAS  Google Scholar 

  15. E. Quarez, et al. J. Am. Chem. Soc. 127, 9177–9190 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

F.P. Poudeu, P., D’Angelo, J., Downey, A. et al. Effects of Antimony on the Thermoelectric Properties of the Cubic Pb9.6SbyTe10-xSexMaterials. MRS Online Proceedings Library 886, 509 (2005). https://doi.org/10.1557/PROC-0886-F05-09

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0886-F05-09

Navigation