Skip to main content
Log in

Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The transient Harman technique is used to characterize the cross-plane ZT of InGaAs/InGaAlAs superlattice structures with embedded ErAs nanoparticles in the well layers. ErAs nanoparticles have proven to substantially reduce the thermal conductivity while slightly increasing the electrical conductivity of bulk InGaAs. The InGaAs/InGaAlAs superlattice structure was designed to have a barrier height of approximately 200meV. Although ErAs nanoparticles provide free carriers inside the semiconductor matrix, additional doping with Si increased the Fermi energy to just below the barrier height. The bipolar transient Harman technique was used to measure device ZT of samples with different superlattice thicknesses in order to extract the intrinsic cross-plane ZT of the superlattice by eliminating the effects of device Joule heating and parasitics. High-speed packaging is used to reduce signal ringing due to electrical impedance mismatch and achieve a short time resolution of roughly 100ns in transient Seebeck voltage measurement. The measured intrinsic cross-plane ZT of the superlattice structure is 0.13 at room temperature. This value agrees with calculations based on the Boltzmann transport equation and direct measurements of specific film properties. Theoretical calculations predict cross-plane ZT of the superlattice to be greater than 1 at temperatures greater than 700K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shakouri and J. Bowers, Appl. Phys. Lett. 71, 1234 (1997).

    Article  CAS  Google Scholar 

  2. G. D. Mahan, and L. M. Woods, Phys. Rev. Lett. 80, 4016 (1998).

    Article  CAS  Google Scholar 

  3. D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004)

    Article  Google Scholar 

  4. G. Chen, and A. Shakouri, Transactions of the ASME. Journal of Heat Transfer, 124, 242 (2002).

    Article  CAS  Google Scholar 

  5. S. T. Huxtable, A. R. Abramson, C. L. Tien, A. Majumder, C. Labounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, Appl. Phys. Lett. 80, 1737 (2002).

    Article  CAS  Google Scholar 

  6. W. Kim, S. Singer, A. Majumdar, D. Vashaee, Zhixi Bian, A. Shakouri, G. Zeng, J. E. Bowers, J. M. Zide, and A. C. Gossard, Appl. Phys. Lett., Low thermal conductivity and high Seebeck coefficient of superlattices, (to be submitted).

  7. J. M. Zide, D. O. Klenov, S. Stemmer, A. C. Gossard, G. Zeng, J. E. Bowers, D. Vashaee and A. Shakouri, Appl. Phys. Lett. 87, 112102 (2005).

    Article  Google Scholar 

  8. J. M. Zide, D. Vashaee, G. Zeng, J. E. Bowers, A. Shakouri, and A. C. Gossard, Phys. Rev. Lett., Demonstration of electron filtering to increase the Seebeck coefficient in ErAs:InGaAs/InGaAlAs superlattices, (submitted September 2005).

  9. Zhixi Bian, Y. Zhang, H. Schmidt, and A. Shakouri, Proceedings of the 24th International Conference on Thermoelectrics, Clemson, 2005 (proceedings to be published).

  10. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London) 413, 597 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Bian, Z., Zeng, G. et al. Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles. MRS Online Proceedings Library 886, 404 (2005). https://doi.org/10.1557/PROC-0886-F04-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0886-F04-04

Navigation