Skip to main content
Log in

Surface Processes during Growth of Hydrogenated Amorphous Silicon

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Hydrogenated amorphous silicon films for photovoltaics and thin film transistors are deposited from silane containing discharges. The radicals generated in the plasma such as SiH3 and H impinge on the surface and lead to silicon film growth through a complex network of elementary surface processes that include adsorption, abstraction, insertion and diffusion of various radicals. Mechanism and kinetics of these reactions determine the film composition and quality. Developing deposition strategies for improving the film quality requires a fundamental understanding of the radical-surface interaction mechanisms. We have been using in situ multiple total internal reflection Fourier transform infrared spectroscopy and in situ spectroscopic ellipsometry in conjunction with atomistic simulations to determine the elementary surface reaction and diffusion mechanisms. Synergistic use of experiments and atomistic simulations elucidate elementary processes occurring on the surface. Herein, we review our current understanding of the reaction mechanisms that lead to a-Si:H film growth with special emphasis on the reactions of the SiH3 radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science 285, 692 (1999).

    Article  CAS  Google Scholar 

  2. J. R. Abelson, Appl. Phys. A 56, 493 (1993).

    Article  Google Scholar 

  3. G. Ganguly and A. Matsuda, Phys. Rev. B 47, 3661 (1993).

    Article  CAS  Google Scholar 

  4. R. Robertson, D. Hils, H. Chatham, and A. Gallagher, Appl. Phys. Lett. 43, 544 (1983).

    Article  CAS  Google Scholar 

  5. R. Robertson and A. Gallagher, J. Appl. Phys. 59, 3402 (1986).

    Article  CAS  Google Scholar 

  6. H. Fujiwara, Y. Toyoshima, M. Kondo, and A. Matsuda, Phys. Rev. B 60, 13598 (1999).

    Article  CAS  Google Scholar 

  7. H. Fujiwara, Y. Toyoshima, M. Kondo, and A. Matsuda, Solar Energy Materials and Solar Cells 66, 209 (2001).

    Article  CAS  Google Scholar 

  8. W. M. M. Kessels, A. H. M. Smets, D. C. Marra, E. S. Aydil, D. C. Schram, and M. C. M. van de Sanden, Thin Solid Films 383, 154 (2001).

    Article  CAS  Google Scholar 

  9. W. M. M. Kessels, D. C. Marra, M. C. M. van de Sanden, and E. S. Aydil, J. Vac. Sci. Technol. A 20, 781 (2002).

    Article  CAS  Google Scholar 

  10. D. C. Marra, E. A. Edelberg, R. L. Naone, and E. S. Aydil, J. Vac. Sci. Technol. A 16, 3199 (1998).

    Article  CAS  Google Scholar 

  11. D. C. Marra, E. A. Edelberg, R. L. Naone, and E. S. Aydil, Appl. Surf. Sci. 133, 148 (1998).

    Article  CAS  Google Scholar 

  12. D. C. Marra, W. M. M. Kessels, M. C. M. van de Sanden, K. Kashefizadeh, and E. S. Aydil, Surf. Sci. 530, 1 (2003).

    Article  CAS  Google Scholar 

  13. Y. Toyoshima, K. Arai, A. Matsuda, and K. Tanaka, Appl. Phys. Lett. 57, 1028 (1990).

    Article  CAS  Google Scholar 

  14. Y. Toyoshima, K. Arai, A. Matsuda, and K. Tanaka, Appl. Phys. Lett. 56, 1540 (1990).

    Article  CAS  Google Scholar 

  15. Y. Toyoshima, K. Arai, A. Matsuda, and K. Tanaka, J. Non-Cryst. Solids 137, 765 (1991).

    Article  Google Scholar 

  16. Y. Toyoshima, A. Matsuda, and K. Arai, J. Non-Cryst. Solids 166, 103 (1993).

    Article  Google Scholar 

  17. M. Katiyar, G. F. Feng, Y. H. Yang, N. Maley, and J. R. Abelson, J. Non-Cryst. Solids 166, 111 (1993).

    Article  Google Scholar 

  18. M. Katiyar, G. F. Feng, Y. H. Yang, J. R. Abelson, and N. Maley, Appl. Phys. Lett. 63, 461 (1993).

    Article  CAS  Google Scholar 

  19. M. Katiyar, Y. H. Yang, and J. R. Abelson, J. Appl. Phys. 77, 6247 (1995).

    Article  CAS  Google Scholar 

  20. A. von Keudell and J. R. Abelson, Appl. Phys. Lett. 71, 3832 (1997).

    Article  Google Scholar 

  21. A. von Keudell and J. R. Abelson, J. Appl. Phys. 84, 489 (1998).

    Article  Google Scholar 

  22. A. von Keudell and J. R. Abelson, Phys. Rev. B 59, 5791 (1999).

    Article  Google Scholar 

  23. I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, Appl. Phys. Lett. 84, 3079 (2004).

    Article  CAS  Google Scholar 

  24. W. M. M. Kessels, J. P. M. Hoefnagels, P. J. van den Oever, Y. Barrell, and M. C. M. van de Sanden, Surf. Sci. 547, L865 (2003).

    Article  CAS  Google Scholar 

  25. S. Agarwal, A. Takano, M. C. M. van de Sanden, D. Maroudas, and E. S. Aydil, J. Chem. Phys. 117, 10805 (2002).

    Article  CAS  Google Scholar 

  26. S. Agarwal, S. Sriraman, A. Takano, M. C. M. van de Sanden, E. S. Aydil, and D. Maroudas, Surf. Sci. 515, L469 (2002).

    Article  CAS  Google Scholar 

  27. D. Maroudas, Adv. Chem. Eng. 28, 251 (2001).

    Article  Google Scholar 

  28. S. Ramalingam, D. Maroudas, E. S. Aydil, and S. P. Walch, Surf. Sci. 418, L8 (1998).

    Article  CAS  Google Scholar 

  29. S. Ramalingam, D. Maroudas, and E. S. Aydil, J. Appl. Phys. 84, 3895 (1998).

    Article  CAS  Google Scholar 

  30. S. Ramalingam, D. Maroudas, and E. S. Aydil, Appl. Phys. Lett. 72, 578 (1998).

    Article  CAS  Google Scholar 

  31. S. Ramalingam, D. Maroudas, and E. S. Aydil, J. Appl. Phys. 86, 2872 (1999).

    Article  CAS  Google Scholar 

  32. S. Ramalingam, P. Mahalingam, E. S. Aydil, and D. Maroudas, J. Appl. Phys. 86, 5497 (1999).

    Article  CAS  Google Scholar 

  33. S. Ramalingam, D. Maroudas, and E. S. Aydil, IEEE Trans. on Plasma Sci. 27, 104 (1999).

    Article  CAS  Google Scholar 

  34. S. Ramalingam, E. S. Aydil, and D. Maroudas, J. Vac. Sci. Technol. B 19, 634 (2001).

    Article  CAS  Google Scholar 

  35. S. Ramalingam, S. Sriraman, E. S. Aydil, and D. Maroudas, Appl. Phys. Lett. 78, 2685 (2001).

    Article  CAS  Google Scholar 

  36. S. Sriraman, S. Ramalingam, E. S. Aydil, and D. Maroudas, Surf. Sci. 459, L475 (2000).

    Article  CAS  Google Scholar 

  37. S. Sriraman, E. S. Aydil, and D. Maroudas, J. Appl. Phys. 92, 842 (2002).

    Article  CAS  Google Scholar 

  38. S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, Nature 418, 62 (2002).

    Article  CAS  Google Scholar 

  39. S. Sriraman, E. S. Aydil, and D. Maroudas, IEEE Trans. on Plasma Sci. 30, 112 (2002).

    Article  CAS  Google Scholar 

  40. S. Sriraman, P. Mahalingam, E. S. Aydil, and D. Maroudas, Surf. Sci. 540, L623 (2003).

    Article  CAS  Google Scholar 

  41. S. Sriraman, E. S. Aydil, and D. Maroudas, J. Appl. Phys. 95, 1792 (2004).

    Article  CAS  Google Scholar 

  42. S. P. Walch, S. Ramalingam, E. S. Aydil, and D. Maroudas, Chem. Phys. Lett. 329, 304 (2000).

    Article  CAS  Google Scholar 

  43. S. P. Walch, S. Ramalingam, S. Sriraman, E. S. Aydil, and D. Maroudas, Chem. Phys. Lett. 344, 249 (2001).

    Article  CAS  Google Scholar 

  44. E. S. Aydil, D. Maroudas, D. C. Marra, W. M.M. Kessels, S. Agarwal, S. Ramalingam, S. Sriraman, M. C. M. Van de Sanden, and A. Takano, Mat. Res. Soc. Symp. Proc. 664, A.1.1.1 (2001).

    Article  Google Scholar 

  45. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

    Article  CAS  Google Scholar 

  46. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  CAS  Google Scholar 

  47. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Article  CAS  Google Scholar 

  48. T. Ohira, T. Inamura, and T. Adachi, Mater. Res. Soc. Symp. Proc. 336, 177 (1994).

    Article  CAS  Google Scholar 

  49. T. Ohira, O. Ukai, T. Adachi, Y. Takeuchi, and M. Murata, Phys. Rev. B 52, 8283 (1995).

    Article  CAS  Google Scholar 

  50. T. Ohira, O. Ukai, M. Noda, Y. Takeuchi, and M. Murata, Mater. Res. Soc. Symp. Proc. 408, 445 (1996).

    Article  CAS  Google Scholar 

  51. M. S. Valipa, E. S. Aydil, and D. Maroudas, Surf. Sci. Lett., submitted (2004).

    Google Scholar 

  52. T. Bakos, M. S. Valipa, E. S. Aydil, and D. Maroudas, unpublished, (2004).

  53. S. Agarwal, B. Hoex, M. C. M. van de Sanden, D. Maroudas, and E. S. Aydil, Surf. Sci. Lett., submitted, (2004).

    Google Scholar 

  54. D. A. Doughty, J. R. Doyle, G. H. Lin, and A. Gallagher, J. Appl. Phys. 67, 6220 (1990).

    Article  CAS  Google Scholar 

  55. M. S. Valipa, S. Sriraman, E. S. Aydil, and D. Maroudas, Surf. Sci., submitted (2004).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF/DoE Partnership for Basic Plasma Science and Engineering (Award Nos. ECS-0317345 and ECS-0317459), an NSF/ITR grant (Award No. CTS-0205584), and Camille Dreyfus Teacher-Scholar Awards to two of the authors (E.S.A. and D.M.). Fruitful discussions with M.A. Amat, T. Bakos, and M.R. Gungor also are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydil, E.S., Agarwal, S., Valipa, M. et al. Surface Processes during Growth of Hydrogenated Amorphous Silicon. MRS Online Proceedings Library 808, 311–319 (2003). https://doi.org/10.1557/PROC-808-A5.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-808-A5.5

Navigation