Skip to main content
Log in

Crystallographic Anisotropy in Compression of Uranium Metal to 100 GPa

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

New high-pressure x-ray diffraction data on uranium metal (99.9 %) in a diamond anvil cell is presented to 100 GPa (Volume compression V/Vo = 0.700) at room temperature using a variety of pressure markers like ruby, copper, and platinum. The diffraction patterns are carefully indexed allowing for reversal of peak positions based on anisotropic compression. We report anisotropic compression of the orthorhombic unit cell with the axial ratio b/a increasing initially to 40 GPa followed by a rapid decrease at higher pressure. On the other hand, axial ratio c/a shows a rapid increase with increasing pressure followed by saturation at megabar pressures. The most recent full potential electronic structure calculations reproduce the increasing tend of axial ratio c/a to 100 GPa but do not explain the variation in the b/a ratio. Our detailed analysis of all available experimental data also indicates that the observed anisotropic effects are intrinsic to Uranium and are independent of the pressure medium used in the high-pressure experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Wills and Olle Eriksson, Phys. Rev. B 45, 13879 (1992).

    Article  Google Scholar 

  2. J. Akella, G. S. Smith, R. Grover, Y. Wu, and S. Martin, High Pressure Research 2, 295 (1990).

    Article  Google Scholar 

  3. C.S. Yoo, H. Cynn, and P. Soderlind, Phys. Rev. B 57, 10359 (1998).

    Article  Google Scholar 

  4. J. Akella, S. Weir, J. M. Wills, and P. Soderlind, J. Phys.: Condens. Matter 9, L549 (1997).

    CAS  Google Scholar 

  5. M. Penicaud, J. Phys.: Condens. Matter 14, 3575 (2002).

    CAS  Google Scholar 

  6. T. Le Bihan, S. Heathman, M. Idiri, G. H. Lander, J. M. Wills, A. C. Lawson, and A. Lindbaum, Phys. Rev. B 67, 134102 (2003).

    Article  Google Scholar 

  7. C. S. Barrett, M. H. Muller, and R. L. Hitterman, Phys. Rev. 129, 625 (1963).

    Article  CAS  Google Scholar 

  8. H. K. Mao, P. M. Bell, J. W. Shaner and D. J. Steinberg, J. Appl. Phys. 49, 3276 (1978).

    Article  CAS  Google Scholar 

  9. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. M. Fritz, and W. J. Carter, in High Velocity Impact Phenomenon, edited by R. Kinslow (Academic, N. Y., 1970) Chap. VII.

  10. N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, J. Appl. Phys. 66, 2962 (1989).

    Article  CAS  Google Scholar 

  11. R. J. Angel, Reviews in Mineralogy and Geochemistry, 41, 35–60, (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Department of Energy (DOE) Grant No. DE-FG03-03NA00067 and the Lawrence Livermore National Laboratory (LLNL) under the auspices of the U.S. Department of Energy by the University of California under contract No. W-7405-ENG-48. Research carried out (in part) at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vohra, Y.K., Hope, K.M., Patterson, J.R. et al. Crystallographic Anisotropy in Compression of Uranium Metal to 100 GPa. MRS Online Proceedings Library 802, 27–32 (2003). https://doi.org/10.1557/PROC-802-DD1.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-802-DD1.7

Navigation