Skip to main content
Log in

Photo- and Thermal Annealing-Induced Processes in Carbon Nanotube Transistors

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Photoinduced conductivity changes and effects of thermal annealing in carbon nanotube transistors have been examined. Low-intensity ultraviolet light significantly reduces the p-channel conductance while simultaneously increasing the n-channel conductance. A combination of optical absorption and electron transport measurements reveals that these changes occur without variations in dopant concentrations. Measurements with different metals reveal that UV induces oxygen desorption from the electrodes rather than from nanotubes. In Ti-nanotube contact where the Schottky barrier plays an important role, photodesorption of oxygen mainly occurs from the native oxide of Ti electrodes. Decrease in the p-channel conductance arises from the metal work function change which causes larger hole Schottky barrier. Non-Schottky Pd-contacted nanotube transistors do not show photodesorption effects with low intensity UV. Thermal annealing of nanotube transistors with Ti/Au electrodes also leads to the disappearance of the photodesorption effects. However, a noticeable p-doping is observed to upon air exposure after thermal annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carbon Nanotubes: Synthesis, Structure, Properties and Applications, edited by M. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Berlin, 2001).

    Google Scholar 

  2. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, P. L. McEuen, Nature 397, 598 (1999).

    Article  CAS  Google Scholar 

  3. A. Bochtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001).

    Article  Google Scholar 

  4. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).

    Article  CAS  Google Scholar 

  5. M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).

    Article  CAS  Google Scholar 

  6. R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai., Appl. Phys. Lett. 79, 2258 (2001).

    Article  CAS  Google Scholar 

  7. M. Shim and G. P. Siddons, Appl. Phys. Lett. 83, 3564 (2003).

    Article  CAS  Google Scholar 

  8. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287, 1801 (2001).

    Article  Google Scholar 

  9. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 89, 6801 (2002).

    Article  Google Scholar 

  10. G. U. Sumanasekera, C. K. W. Adu, S. Fang, and P. C. Eklund, Phys. Rev. Lett. 85, 1096 (2000).

    Article  CAS  Google Scholar 

  11. J. Park and P. L. McEuen, Appl. Phys. Lett. 79, 1363 (2001).

    Article  CAS  Google Scholar 

  12. V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Appl. Phys. Lett. 80, 2773 (2002).

    Article  CAS  Google Scholar 

  13. H. T. Soh, C. F. Quate, A. F. Morpurgo, C. M. Marcus, J. Kong, and H. Dai, Appl. Phys. Lett. 75, 627 (1999).

    Article  CAS  Google Scholar 

  14. M. S. Fuhrer, B. M. Kim, T. Durkop, T. Brintlinger, Nano Lett. 2, 755 (2002).

    Article  CAS  Google Scholar 

  15. M. Radosevljevi, M. Freitag, K. V. Thadani, A. T. Johnson, Nano Lett. 2, 761 (2002).

    Article  Google Scholar 

  16. J. B. Cui, R. Sordan, M. Burghard, and K. Kern, Appl. Phys. Lett. 81, 3260 (2002).

    Article  CAS  Google Scholar 

  17. W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai, Nano Lett. 3, 193 (2003).

    Article  CAS  Google Scholar 

  18. L. Hanley, X. Guo, and J. T. Yates, J. Chem. Phys. 91, 7220 (1989). C. N. Rusu and J. T. Yates, Langmuir 13, 4311 (1997).

    Article  CAS  Google Scholar 

  19. {nrY. Yaish, J. -Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, P. L. McEuen, preprint.}

Download references

Acknowledgment

This work was funded by UIUC. Characterization of the samples was carried out in the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the U.S. Department of Energy under grant DEFG02-91-ER45439.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, M., Siddons, G.P., Jeong, J.K. et al. Photo- and Thermal Annealing-Induced Processes in Carbon Nanotube Transistors. MRS Online Proceedings Library 789, 199–204 (2003). https://doi.org/10.1557/PROC-789-N16.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-789-N16.2

Navigation