Skip to main content
Log in

Atomistic and Continuum Studies of Diffusional Creep and Associated Dislocation Mechanisms in thin Films on Substrates

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Motivated by recent theoretical and experimental progress, large-scale atomistic simulations are performed to study plastic deformation in sub-micron thin films. The studies reveal that stresses are relaxed by material transport from the surface into the grain boundary. This leads to the formation of a novel defect identified as diffusion wedge. Eventually, a crack-like stress field develops because the tractions along the grain boundary relax, but the adhesion of the film to the substrate prohibits strain relaxation close to the interface. This causes nucleation of unexpected parallel glide dislocations at the grain boundary-substrate interface, for which no driving force exists in the overall biaxial stress field. The observation of parallel glide dislocations in molecular dynamics studies closes the theory-experiment-simulation linkage. In this study, we also compare the nucleation of dislocations from a diffusion wedge with nucleation from a crack. Further, we present preliminary results of modeling constrained diffusional creep using discrete dislocation dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Vinci, E. Zielinski, J. Bravman, Thin Solid Films 262, 142–153 (1995)

    Article  CAS  Google Scholar 

  2. D. Weiss, H. Gao, E. Arzt, Acta Mater. 49, 2395–2403 (1999)

    Article  Google Scholar 

  3. V. Yamakov, D. Wolf, W. Phillpot, H. Gleiter, Acta Mater. 50, 61–73 (2002)

    Article  CAS  Google Scholar 

  4. T. Balk, G. Dehm, E. Arzt, Zeitschrift fuer Metallkunde 93 (5), 383–391 (2002)

    Article  Google Scholar 

  5. W. Nix, Scripta Mater. 39, 545–554 (1998)

    Article  CAS  Google Scholar 

  6. H. Gao, L. Zhang, W. Nix, C. Thompson, E. Arzt, Acta Mater. 47, 2865–2878 (1999)

    Article  CAS  Google Scholar 

  7. L. Zhang and H. Gao, Zeitschrift fuer Metallkunde 93 (5), 417–427 (2002)

    Article  CAS  Google Scholar 

  8. J. Stadler, R. Mikulla, H.-R. Trebin, Int. J. Mod. Phys. C 8, 1131–1140 (1997).

    Article  Google Scholar 

  9. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001).

    Article  Google Scholar 

  10. M.J. Buehler, A. Hartmaier, H. Gao, submitted to: Journal of the Mechanics and Physics of Solids (2003).

  11. T. Mura, in Advances in Materials Research, ed. H. Herman, vol. 3, 1–108 (1968)

    Google Scholar 

  12. M.Y. Gutkin, A.E. Romanov, phys. Stat. sol. (a) 125, 107–125 (1991)

    Article  Google Scholar 

  13. A. Hartmaier, P. Gumbsch, Phil. Mag. A 82, 3187–3200 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buehler, M.J., Hartmaier, A. & Gao, H. Atomistic and Continuum Studies of Diffusional Creep and Associated Dislocation Mechanisms in thin Films on Substrates. MRS Online Proceedings Library 779, 47 (2003). https://doi.org/10.1557/PROC-779-W4.7

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-779-W4.7

Navigation