Skip to main content
Log in

Growth of Thick InN by Molecular Beam Epitaxy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this study, InN films with thickness up to 7.5 micron were prepared by molecular beam epitaxy (MBE) on (0001) sapphire and quasi-bulk GaN templates. Previously it has been challenging to grow InN film much beyond 1 micron because the growing surface tended to become rough. Techniques to overcome this limit have been developed. Various buffer techniques were used and compared to optimize the epitaxial growth. It was found that with increasing film thickness, Hall mobility will monotonically increase, while carrier concentration decreases. Hall mobility beyond 2100 cm2/Vs with carrier concentration close to 3×1017 cm−3 was obtained at room temperature. Compared with the lowest carrier concentration ∼2×1018 cm−3 obtained on thin InN films grown at the same condition, the conclusion is that impurities from the growth environment are not responsible for the high background doping of InN. Instead, some structural defects or substrate/buffer impurities may be the major source of the unintentional doping, which can be reduced by growing thicker films.

Some results on Mg and Be doping of InN will be reported as well. To date, all Mg and Be doping attempts have resulted in n-type material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lu, W. J. Schaff, J. Hwang, H. Wu, K. Goutam and L. F. Eastman, Appl. Phys. Lett. 79, 1489 (2001).

    Article  CAS  Google Scholar 

  2. M. Higashiwaki and T. Matsui, Jpn. J. Appl. Phys. 41, L540 (2002).

    Article  CAS  Google Scholar 

  3. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Stat. Solidi (b), 229, R1 (2002).

    Article  CAS  Google Scholar 

  4. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Auger III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

    Article  CAS  Google Scholar 

  5. T. Matsuoka, H. Okamoto, M. Nakao and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).

    Article  CAS  Google Scholar 

  6. M. J. Manfra, N. G. Weimann, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, S. Syed, H. L. Stormer, W. Pan, D. V. Lang, S. N. G. Chu, G. Kowash, A. W. Sergent, J. Caissie, K. M. Molvar, L. J. Mahoney and R. J. Molnar, J. Appl. Phys. 92, 338 (2002).

    Article  CAS  Google Scholar 

  7. H. Lu, W. J. Schaff, J. Hwang, H. Wu, W. Yeo, A. Pharkya, and L. F. Eastman, Appl. Phys. Lett. 77, 2548 (2000).

    Article  CAS  Google Scholar 

  8. D. C. Look, H. Lu, W. J. Schaff, J. Jasinski and Z. Liliental-weber, Appl. Phys. Lett. 80, 258 (2002),

  9. J. Cai and F. A. Ponce, Phys. Stat. Sol. (a), 192, 407 (2002).

    Article  CAS  Google Scholar 

  10. H. Lu, W. J. Schaff, J. Hwang and L. F. Eastman, MRS Spring Meeting (April 16–20, 2001, San Francisco, CA). on Mater. Res. Soc. Symp. (2001), 680E, E3.2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Schaff, W.J., Eastman, L.F. et al. Growth of Thick InN by Molecular Beam Epitaxy. MRS Online Proceedings Library 743, 410 (2002). https://doi.org/10.1557/PROC-743-L4.10

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-743-L4.10

Navigation