Skip to main content
Log in

Glass and glass-ceramic matrix composites: from model systems to useful materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

By reinforcing glass and glass-ceramic matrices with ceramic or metallic fibres, advanced composite materials with improved mechanical properties can be fabricated. These composites were originally developed as model systems for laboratory-scale experiments. Due to their remarkable thermomechanical properties, however, the materials are candidate for a variety of technical applications. The present contribution is based on an extensive review of the available literature on these materials, accumulated in the last 30 years, focusing on manufacturing techniques. The literature analysis reveals that several challenges related to the composites fabrication remain for future developments. In particular, it is shown that relative limited R&D work has been carried out so far in the area of manufacturing of engineering components and structures having complex geometry and large dimensions. The application of electrophoretic deposition techniques in order to manufacture three-dimensional components, e.g. tubes, may represent a considerable improvement in this regard. The final goal of this report is to generate a broader interest in glass and glass-ceramic matrix composites both in the scientific and industrial communities, so that the high technological potential of these materials can be wider exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Rawlings, Composites 25, 372 (1994).

    Google Scholar 

  2. I. Crivelli-Visconti, G. A. Cooper, Nature 221, 754 (1969).

    Google Scholar 

  3. A. R. Boccaccini, J. Ceram. Soc. Japan 109 [7], S99 (2001).

    Google Scholar 

  4. A. R. Boccaccini, Glass Technol. (2001) (in press).

    Google Scholar 

  5. S. R. Levitt, J. Mat. Sci. 8, 793 (1973).

    Google Scholar 

  6. R. A. Sambell, D. H. Bowen, D. C. Phillips, J. Mat. Sci. 7, 676 (1972).

    Google Scholar 

  7. V. Bianchi, P. Fournier, F. Platon, P. Reynaud, J. Europ. Ceram. Soc. 19, 581 (1999).

    Google Scholar 

  8. A. R. Boccaccini, G. Gevorkian, Glastech. Ber. Glass Science and Technol. 74, 17 (2001).

    Google Scholar 

  9. S. Yajima, K. Okamura, J. Hayashi, M. Omori, J. Am. Ceram. Soc. 59, 324 (1976).

    Google Scholar 

  10. I. W. Donald, Key Eng. Mat. 108-110, 123 (1995).

    Google Scholar 

  11. K. M. Prewo, J. Brennan, G. K. Layden, Ceram. Bull. 65, 305 (1986).

    Google Scholar 

  12. W. Beier, J. Heinz, W. Pannhorst, VDI Berichte 1021, 255 (1993).

    Google Scholar 

  13. T. Ishikawa, S. Kajii, K. Matsunaga, T. Hogami, Y. Kohtoku, J. Mat. Sci. 30, 6218 (1995).

    Google Scholar 

  14. E. Zhang, D. P. Thompson, J. Mat. Sci. 31, 6423 (1996).

    Google Scholar 

  15. Y. Sun, R. N. Singh, Acta Mater. 46, 1657 (1998).

    Google Scholar 

  16. N. P. Bansal, Mat. Sci. Eng. A220, 129 (1996).

    Google Scholar 

  17. N. P. Bansal, Mat. Sci. Eng. A231, 117 (1997).

    Google Scholar 

  18. T. A. Michalske, J. R. Hellmann, J. Am. Ceram. Soc. 71, 725 (1988).

    Google Scholar 

  19. M. P. Borom, C. A. Johnson, J. Am. Ceram. Soc. 70, 1 (1987).

    Google Scholar 

  20. K. K. Chawla, M. K. Ferber, Z. R. Xu, R. Venkatesh, Mat. Sci. Eng. A162, 35 (1993).

    Google Scholar 

  21. H. Iba, T. Naganuma, K. Matsumura, Y. Kagawa, J. Mat. Sci. 34, 5701 (1999).

    Google Scholar 

  22. B. Fankhanel, E. Muller, K. Weise, G. Marx, Key Eng. Mat. 206-213, 1109 (2002).

    Google Scholar 

  23. D. Huelsenberg, P. Feehling, T. Mache, V. Winkler, D. Raab, A. R. Boccaccini, in Verbundwerkstoffe und Werkstoffverbunde, edited by B. Wielage, G. Leonhardt, Wiley VCH, Weinheim, Germany, 2001) pp.365–369.

  24. P. Ducheyne, L. L. Hench, J. Mat. Sci. 17, 595 (1982).

    Google Scholar 

  25. I. W. Donald, B. L. Metcalfe, J. Mat. Sci. 31, 1139 (1996).

    Google Scholar 

  26. I. W. Donald, B. L. Metcalfe, A. D. Bye, J. Mat. Sci. Lett. 7, 964 (1988).

    Google Scholar 

  27. A. E. Rudovskij, P. D. Sarkisov, A. A. Ivashin, V. V. Budov, in Ceramic-and Carbon-Matrix Composites, edited by V. I. Trefilov, Chapman and Hall, London, 1995) pp.255–285.

  28. A. R. Boccaccini, J. Ovenstone, P. A. Trusty, Applied Composite Materials 4, 145 (1997).

    Google Scholar 

  29. A. R. Boccaccini, C. Kaya, K. K. Chawla, Composites Part A 32, 997 (2001).

    Google Scholar 

  30. K. M. Prewo, in Mat. Sci. Research Vol. 20: Tailoring Multiphase and Composite Ceramics, edited by R. E. Tressler, et al. Plenum Press, New York 1986) pp.529–547.

  31. K. Lambrinou, O. Van der Biest, in 9th CIMTEC, Symposium V, edited by P. Vincenzini Techna Srl., 1999) pp.163–168.

  32. Ch. Reich, R. Brückner, Comp. Sci. Technol. 57, 533 (1997).

    Google Scholar 

  33. H.-H. Shin, R. F. Speyer, J. Mat. Sci. 29, 3630 (1994).

    Google Scholar 

  34. C. Zhao, K. Lambrinou, O. Van der Biest, J. Mat. Sci. 34, 1865 (1999).

    Google Scholar 

  35. K. Cho, R. J. Kerans, K. A. Jepsen, Ceram Eng. Sci. Proc. 15, 815 (1995).

    Google Scholar 

  36. C. M. Gustafson, R. E. Dutton, R. J. Kerans, J. Am. Ceram. Soc. 78, 1423 (1995).

    Google Scholar 

  37. K. K. Chawla, Ceramic Matrix Composites, Chapman and Hall, London, 1993) p.128.

    Google Scholar 

  38. J. J. Brennan, in Fibre Reinforced Ceramic Composites, Materials, Processing and Technology, edited by K. Mazdiyasni, Noyes Publications, New Jersey, 1990) pp.222–259.

  39. G. Larnac, P. Lespade, P. Peres, J. M. Donzac, in High Temperature Ceramic Matrix Composites, Vol. 1, edited. by R. Naslain, et al. Woodhead Publ. Ltd., 1993) pp.777–784.

  40. A. Briggs, R. W. Davidge, Mat. Sci. Eng. A109, 363 (1989).

    Google Scholar 

  41. W. Beier, Schott Information 73, 3 (1995).

    Google Scholar 

  42. R. W. Goettler, US Patent Nr. 5,122,176, Jun. 16, 1992.

    Google Scholar 

  43. T. R. Hinklin, S. S. Neo, K. W. Chew, R. M. Laine, Ceram. Trans. 74, 117 (1996).

    Google Scholar 

  44. S. S. Neo, T. R. Hinklin, K. W. Chew, R. M. Laine, J. Am. Ceram. Soc. (2001) (in press).

    Google Scholar 

  45. S. M. Johnson, D. J. Rowcliffe, M. K. Cinibulk, in: Ceramic Microstructures ’86: Role of Interfaces, edited by J. Pask and A. G. Evans, Plenum Press, N. York, 1987) pp.633–641.

  46. E. Roeder, N. Klein, K. Langhans, Glastech. Ber. 61, 143 (1988).

    Google Scholar 

  47. G. H. Cullum, in Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, edited by R. L. Lehman, S. K. El-Rahaiby, J. B. Wachtman, Purdue University Press, West Lafayette, USA, 1995) pp.185–204.

  48. K. S. Mazdiyasni, Mat. Sci. Eng. A144, 83 (1991).

    Google Scholar 

  49. B. Harris, R. G. Cooke, F. W. Hammett, R. S. Russell-Floyd, Ind. Ceram. 18, 33 (1998).

    Google Scholar 

  50. Ph. Colomban, N. Lapous, Comp. Sci. Technol. 56, 739 (1996).

    Google Scholar 

  51. W. Pannhorst, M. Spallek, R. Brückner, H. Hegeler, C. Reich, G. Grathwohl, B. Meier, D. Spelmann, Ceram. Eng. Sci. Proc. 11 [7-8], 947 (1990).

    Google Scholar 

  52. H. Hegeler, R. Brückner, J. Mat. Sci. 24, 1191 (1989).

    Google Scholar 

  53. C. Kaya, A. R. Boccaccini, P. A. Trusty, J. Europ. Ceram. Soc. 19, 2859 (1999).

    Google Scholar 

  54. C. Kaya, A. R. Boccaccini, K. K. Chawla, J. Am. Ceram. Soc. 83, 1885 (2000).

    Google Scholar 

  55. P. A. Trusty, A. R. Boccaccini, Applied Composite Materials 5, 207 (1998).

    Google Scholar 

  56. C. Kaya, F. Kaya, A. R. Boccaccini, J. Am. Ceram. Soc. (2001) (submitted).

    Google Scholar 

  57. Y. Zhou, O. Van der Biest, Sil. Indust. 7-8, 163 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccaccini, A.R., Kaya, C. Glass and glass-ceramic matrix composites: from model systems to useful materials. MRS Online Proceedings Library 702, 761 (2001). https://doi.org/10.1557/PROC-702-U7.6.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-702-U7.6.1

Navigation