Skip to main content
Log in

Strain Relaxation at Low Misfits: Dislocation Injection vs. Surface Roughening

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Two competing strain relaxation mechanisms, namely misfit dislocation generation and surface roughening, have been extensively studied using the GexSi1-x/Si (x< 0.5) system as an example. A predictive model has been developed which accurately describes the nature of misfit dislocation nucleation and growth under non-equilibrium conditions. Using optical and electron microscopy, coupled with a refined theoretical description of dislocation nucleation, it is shown that strain relieving dislocations are readily generated at low misfits with a characteristic activation energy barrier regardless of the growth technique employed (i.e. MBE, RTCVD and UHVCVD). Secondly we have studied the alternative elastic strain relaxation mechanism involving surface undulation; x-ray diffraction, electron and atomic force microscopy have been used to characterize GexSi1-x/Si (x<0.5) structures grown by UHVCVD and MBE at relatively higher temperatures. A theoretical model has been used to model the critical thickness for surface wave generation. The conditions governing the interplay between dislocation formation and surface buckling are described in terms of a "morphological instability diagram".

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Qianghua Xie, N.P. Kobayashi, T.R. Ramachandran, A. Kalburge, P. Chen and A. Madhukar, J. Vac. Sci. Tech B, to appear; also cited by R.A. Metzger, Compound Semiconductor 1 (3), 37 (1995)

    CAS  Google Scholar 

  2. J.H. van der Merwe, Crit. Rev. Sol. St. Mat. Sci., 17, 187 (1991).

  3. For a recent review see: D.D. Perovic, Rep. Prog. Phys. (in preparation).

    CAS  Google Scholar 

  4. D.D. Perovic and D.C. Houghton, Inst. Phys. Conf. Ser., 146, 117, (1995).

  5. For example, see these proceedings: Mat. Res. Soc. Symp. Proc. Vol. 399 (1996).

    Google Scholar 

  6. M.A. Grinfeld and D.J. Srolovitz, in: Properties of Strained and Relaxed Silicon Germanium, edited by E. Kasper, (Inspec, London, 1995), p.3.

    Article  CAS  Google Scholar 

  7. J. Tersoff and F.K. LeGoues, Phys. Rev. Lett., 72, 3570 (1994).

  8. K.M. Chen, D.E. Jesson, S.J. Pennycook, T. Thundat and R.J. Warmack, Phys. Rev. Lett, (to appear).

  9. A. Madhukar, J. Cryst. Growth, (in press).

    Article  CAS  Google Scholar 

  10. D.E. Jesson, S.J. Pennycook, J.-M. Baribeau and D.C. Houghton, Phys. Rev. Lett., 71, 1744 (1993); D.E. Jesson, K.M. Chen, S.J. Pennycook, T. Thundat and R.J. Warmack, Science, 268, 1161 (1995).

    Article  CAS  Google Scholar 

  11. A.G. Cullis, A.J. Pidduck and M.T. Emeny, Phys. Rev. Lett., 75, 2368 (1995).

    Article  CAS  Google Scholar 

  12. D.C. Houghton, D.J. Lockwood, M.W.C. Dharma-wardana, E.W. Fenton, J.-M. Baribeau and M.W. Denhoff, J. Cryst. Growth., 81, 434 (1987).

    Google Scholar 

  13. J.C. Sturm, P.V. Schwartz, E.J. Prinz and H. Manoharan, J. Vac. Sci. Technol., B, 10, 2011 (1992).

    CAS  Google Scholar 

  14. B. Meyerson, Proc. I.E.E.E., 80, 1592 (1992).

  15. H. Lafontaine, D.C. Houghton, D. Elliot, N.L. Rowell, J.-M. Baribeau, S. Laframboise, G.I. Sproule and S.J. Rolfe, J. Vac. Sci. Technol. B. (to appear).

    Article  CAS  Google Scholar 

  16. D.C. Houghton, J. Appl. Phys., 70, 2136 (1991).

    Article  CAS  Google Scholar 

  17. H. Alexander and P. Haasen, Solid State Phys., 22, 27 (1968).

  18. A. Zhao, B.A. Sc. Thesis, University of Toronto, (1993).

    Article  CAS  Google Scholar 

  19. D.D. Perovic and D.C. Houghton, Mat. Res. Soc. Symp. Proc., 263, 391 (1992); Phys. Stat. Sol. (a), 138, 425 (1993).

    Article  Google Scholar 

  20. J.-P. Noël, N.L. Rowell, D.C. Houghton, A. Wang and D.D. Perovic, Appl. Phys. Lett., 61, 690 (1992).

    Article  Google Scholar 

  21. N.L. Rowell, J.-P. Noël, D.C. Houghton, A. Wang, L.C. Lenchyshyn, M.L.W. Thewalt and D.D. Perovic, J. Appl. Phys., 74, 2790 (1992).

    Article  CAS  Google Scholar 

  22. K.M. Chen, D.E. Jesson, S.J. Pennycook, M. Mostoller, T. Kaplan, T. Thundat and R.J. Warmack, Phys. Rev. Lett., 75, 1582 (1995).

    Article  Google Scholar 

  23. T.J. Gosling and J.R. Willis, J. Mech. Phys. Sol., 42, 1199 (1994).

    Google Scholar 

  24. J.A. Van Vecheten, Handbook on Semiconductors, Vol. 3, edited by T.S. Moss, (Amsterdam, North Holland, 1980), p. 1.

    Article  CAS  Google Scholar 

  25. P.M. Fahey, P.B. Griffin and J.D. Plummer, Rev. Mod. Phys., 61, 289 (1989).

    Google Scholar 

  26. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982, p.757.

    Article  CAS  Google Scholar 

  27. A.J. Pidduck, D.J. Robbins, A.G. Cullis,W.Y. Leong and A.M. Pitt., Thin Solid Films, 222, 78 (1992).

  28. J.-M. Baribeau, J. Cryst. Growth, (in press).

    Article  CAS  Google Scholar 

  29. B.J. Spencer, P.W. Voorhees and S.H. Davis, J. Appl. Phys., 73, 4955 (1993).

    Article  CAS  Google Scholar 

  30. M.G. Lagally, Jap. J. Appl. Phys., 32, 1493 (1993).

  31. K.M. Chen, D.E. Jesson, S.J. Pennycook, T. Thundat and R.J. Warmack, (these proceedings).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.D. Perovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perovic, D., Bahierathan, B., Houghton, D. et al. Strain Relaxation at Low Misfits: Dislocation Injection vs. Surface Roughening. MRS Online Proceedings Library 399, 325 (1995). https://doi.org/10.1557/PROC-399-325

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-399-325

Navigation