Skip to main content
Log in

Atomic Scale Engineering of Superlattices and Magnetic Wires

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In the past years artificially-structured materials have been grown with an increasing degree of sophistication due to steady progress in our ability to control growth processes down to the atomic level. These materials have yielded new physical properties due to the confinement of electrons in less than three dimensions. Thus, the confinement of electrons in two-dimensional (2D) metallic superlattices has resulted in oscillatory magnetic coupling with an associated oscillatory giant magnetoresistance (GMR). New properties are expected when the electrons are further confined to one dimension (1D) of free motion in the structures known as quantum wires. In this report we briefly describe two recent examples of atomic-scale engineering of materials. In the first case a surfactant is used to purposely modify the structure of magnetic/non magnetic superlattices. The second example illustrates a further reduction in dimensionality obtained by modifying the substrate onto which the growth takes place: the fabrication of 1D magnetic quantum wires on vicinal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. González et al., Phys. Rev. B 24, 3245 (1981).

    Article  Google Scholar 

  2. J. R. Cerdá et al., J. Phys: Condensed Matter 5, 2055 (1993).

    Google Scholar 

  3. A. Cebollada et al., Phys. Rev. B 39, 9726 (1989).

    Article  Google Scholar 

  4. J. J. de Miguel et al., J. Magn. Magn. Mat. 93, 1 (1991).

    Article  Google Scholar 

  5. Z. Qiu. et al., Phys. Rev. B 46, 8659 (1992).

    Article  Google Scholar 

  6. M. T. Johnson et al., Phys. Rev. Lett. 68, 2688 (1992).

    Article  CAS  Google Scholar 

  7. S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).

    Article  CAS  Google Scholar 

  8. D. H. Mosca et al., J. Magn. Magn. Mat. 94, L1 (1991).

    Article  Google Scholar 

  9. M. T. Johnson et al., Phys. Rev. Lett. 69, 969 (1992).

    Article  CAS  Google Scholar 

  10. G. R. Harp et al., Phys. Rev. B 47, 8721 (1993).

    Article  Google Scholar 

  11. M. T. Kief and J. W. F. Egelhoff, Phys. Rev. B 47, 10785 (1993).

    Article  Google Scholar 

  12. A. Schreyer et al., Phys. Rev. B 47, 15334 (1993).

    Article  Google Scholar 

  13. J. de la Figuera, J.E. Prieto, C. Ocal and R. Miranda, Phys. Rev. B 47, 13043 (1993).

    Article  Google Scholar 

  14. J. de la Figuera et al. (unpublished).

  15. J. Camarero et al., Phys. Rev. Lett. 73, 2448 (1994).

    Article  CAS  Google Scholar 

  16. T. M. Whitney et al., Science 261, 1316 (1993).

    Article  CAS  Google Scholar 

  17. L. Piraux et al., Appl. Phys. Lett. 65, 2484 (1995).

    Article  Google Scholar 

  18. A. Blondel et al., Appl. Phys. Lett. 65, 3019 (1995).

    Article  Google Scholar 

  19. J. de la Figuera et al., Appl. Phys. Lett. 66, 1006 (1995).

    Article  Google Scholar 

  20. M. Poensgen et al., Surf. Sci. 274, 430 (1992).

    Article  CAS  Google Scholar 

  21. H. J. Elmers et al., Phys. Rev. Lett. 73, 898 (1994).

    Article  CAS  Google Scholar 

  22. C. M. Schneider et al., Phys. Rev. Lett. 64, 1059 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camarero, J., de la Figuera, J., Spendeler, L. et al. Atomic Scale Engineering of Superlattices and Magnetic Wires. MRS Online Proceedings Library 384, 49–59 (1995). https://doi.org/10.1557/PROC-384-49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-384-49

Navigation