Skip to main content
Log in

Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report the chemical synthesis of Fe-core/Au-shell nanoparticles (Fe/Au) by a reverse micelle method, and the investigation of their growth mechanisms and oxidation-resistant characteristics. The core-shell structure and the presence of the Fe and Au phases have been confirmed by transmission electron microscopy, energy dispersive spectroscopy, x-ray diffraction, Mössbauer spectroscopy, and inductively coupled plasma techniques. Additionally, atomic-resolution Z-contrast imaging and electron energy loss spectroscopy in a scanning transmission electron microscope have been used to study details of the growth processes. The Au-shells grow by nucleating on the Fe-core surfaces before coalescing. First-order reversal curves, along with the major hysteresis loops of the Fe/Au nanoparticles have been measured as a function of time in order to investigate the evolution of their magnetic properties. The magnetic moments of such nanoparticles, in the loose powder form, decrease over time due to oxidation. The less than ideal oxidation-resistance of the Au shell may have been caused by the rough Au surfaces. In a small fraction of the particles, off-centered Fe cores have been observed, which are more susceptible to oxidation. However, in the pressed pellet form, electrical transport measurements show that the particles are fairly stable, as the resistance and magnetoresistance of the pellet do not change appreciably over time. Our results demonstrate the complexity involved in the synthesis and properties of these heterostructured nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Awschalom and S. von Molnár, in Nanotechnology (Chapter 12), edited by G. Timp (Springer-Verlag, New York, 1998).

    Google Scholar 

  2. K. Ounadjela and R. L. Stamps, in Handbook of Nanostructured Materials and Nanotechnology (Chapter 9), edited by H. S. Nalwa (Academic Press, San Diego, 2000), Vol. 2.

    Google Scholar 

  3. C. Ross, An. Rev. Mater. Res. 31, 203 (2001).

    CAS  Google Scholar 

  4. J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, J. Magn . Magn. Mater. 256, 449 (2003).

    CAS  Google Scholar 

  5. D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, J. Magn . Magn. Mater. 225, 256 (2001).

    CAS  Google Scholar 

  6. C. M. Niemeyer, Angewandte Chemie, Int. Ed. 40, 4128 (2001).

    CAS  Google Scholar 

  7. G. X. Li and S. X. Wang, IEEE Trans. Magn. 39, 3313 (2003).

    Google Scholar 

  8. G. X. Li, S. X. Wang, and S. H. Sun, IEEE Trans. Magn. 40, 3000 (2004).

    CAS  Google Scholar 

  9. A. R. Bausch, W. Moller, and E. Sackmann, Biophys. J. 76, 573 (1999).

    CAS  Google Scholar 

  10. S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, J. Mater. Chem. 14, 2161 (2004).

    CAS  Google Scholar 

  11. P. Gangopadhyay, S. Gallet, E. Franz, A. Persoons, and T. Verbiest, IEEE Trans. Magn. 41, 4194 (2005).

    Google Scholar 

  12. M. Zahn, J. Nanopar. Res. 3, 73 (2001).

    CAS  Google Scholar 

  13. C. J. O’Connor, C. Seip, C. Sangregorio, E. Carpenter, S. Li, G. Irvin, and V. T. John, Mole. Crys. Liq. Crys. Sci. Tech. A 335, 1135 (1999).

    Google Scholar 

  14. D. Wang, J. He, N. Rosenzweig, and Z. Rosenzweig, Nano Lett. 4, 409 (2004).

    CAS  Google Scholar 

  15. S. Sun and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).

    CAS  Google Scholar 

  16. L. T. Kuhn, A. Bojesen, L. Timmermann, M. M. Nielsen, and S. Morup, J. Phys.: Cond. Mat. 14, 13551 (2002).

    CAS  Google Scholar 

  17. S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. X. Li, J. Am. Chem. Soc. 126, 273 (2004).

    CAS  Google Scholar 

  18. V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Science 291, 2115 (2001).

    CAS  Google Scholar 

  19. S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000).

    CAS  Google Scholar 

  20. F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, and P. Fejes, Science 303, 821 (2004).

    CAS  Google Scholar 

  21. J. Bai and J.-P. Wang, Appl. Phys. Lett. 87, 152502 (2005).

    Google Scholar 

  22. E. E. Carpenter, C. Sangregorio, and C. J. O’Connor, IEEE Trans. Magn. 35, 3496 (1999).

    CAS  Google Scholar 

  23. T. Kinoshita, S. Seino, K. Okitsu, T. Nakayama, T. Nakagawa, and T. A. Yamamoto, J. Alloy. Comp. 359, 46 (2003).

    CAS  Google Scholar 

  24. B. Ravel, E. E. Carpenter, and V. G. Harris, J. Appl. Phys. 91, 8195 (2002).

    CAS  Google Scholar 

  25. E. E. Carpenter, J. Magn. Magn. Mater. 225, 17 (2001).

    CAS  Google Scholar 

  26. C. J. O’Connor, V. Kolesnichenko, E. Carpenter, C. Sangregorio, W. Zhou, A. Kumbhar, J. Sims, and F. Agnoli, Synth. Met. 122, 547 (2001).

    Google Scholar 

  27. J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E. E. Carpenter, and C. J. O’Connor, J. Solid St. Chem. 159, 26 (2001).

    CAS  Google Scholar 

  28. S.-J. Cho, S. M. Kauzlarich, J. Olamit, K. Liu, F. Grandjean, L. Rebbouh, and G. J. Long, J. Appl. Phys. 95, 6804 (2004).

    CAS  Google Scholar 

  29. S.-J. Cho, J.-C. Idrobo, J. Olamit, K. Liu, N. D. Browning, and S. M. Kauzlarich, Chem. Mater. 17, 3181 (2005).

    CAS  Google Scholar 

  30. S.-J. Cho, A. M. Shahin, G. J. Long, J. E. Davies, K. Liu, F. Grandjean, and S. M. Kauzlarich, Chem. Mater., in press (2006); cond-mat/0512413.

  31. T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, Langmuir 18, 4915 (2002).

    CAS  Google Scholar 

  32. R. F. Egerton, Electron Energy-Loss Spectroscopy in The Electron Microscope, 1986).

  33. K. Liu, L. Zhao, P. Klavins, F. E. Osterloh, and H. Hiramatsu, J. Appl . Phys. 93, 7951 (2003).

    CAS  Google Scholar 

  34. C. R. Pike, A. Roberts, and K. L. Verosub, J. Appl. Phys 85, 6660 (1999).

    CAS  Google Scholar 

  35. H. G. Katzgraber, F. Pázmándi, C. R. Pike, K. Liu, R. T. Scalettar, K. L. Verosub, and G. T. Zimányi, Phys. Rev. Lett. 89, 257202 (2002).

    CAS  Google Scholar 

  36. J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B. Kortright, and K. Liu, Phys. Rev. B 70, 224434 (2004).

    Google Scholar 

  37. J. E. Davies, O. Hellwig, E. E. Fullerton, J. S. Jiang, S. D. Bader, G. T. Zimanyi, and K. Liu, Appl. Phys. Lett. 86, 262503 (2005).

    Google Scholar 

  38. J. E. Davies, J. Wu, C. Leighton, and K. Liu, Phys. Rev. B 72, 134419 (2005).

    Google Scholar 

  39. B. D. Cullity, Intorduction to magnetic materials (Addison-Wesley Pub. Co., Reading, Mass., 1972).

    Google Scholar 

  40. K. Liu and C. L. Chien, IEEE Trans. Magn. 34, 1021 (1998).

    Google Scholar 

  41. G. J. Long, D. Hautot, Q. A. Pankhurst, D. Vandormael, F. Grandjean, J. P. Gaspard, V. Briois, T. Hyeon, and K. S. Suslick, Phys. Rev. B 57, 10716 (1998).

    CAS  Google Scholar 

  42. A. A. Novakova, V. Y. Lanchinskaya, A. V. Volkov, T. S. Gendler, T. Y. Kiseleva, M. A. Moskvina, and S. B. Zezin, J. Magn. Magn. Mater. 258–259, 354 (2003).

    Google Scholar 

  43. G. N. Glavee, K. J. Klabunde, C. M. Sorensen, and G. C. Hadjipanayis, Inorg. Chem. 34, 28 (1995).

    CAS  Google Scholar 

  44. N. Duxin, O. Stephan, C. Petit, P. Bonville, C. Colliex, and M. P. Pileni, Chem. Mater. 9, 2096 (1997).

    CAS  Google Scholar 

  45. S. Linderoth and S. Mørup, J. Appl. Phys. 69, 5256 (1991).

    CAS  Google Scholar 

  46. L. Savini, E. Bonetti, L. Del Bianco, L. Pasquini, L. Signorini, M. Coisson, and V. Selvaggini, J. Magn. Magn. Mater. 262, 56 (2003).

    CAS  Google Scholar 

  47. J. Q. Xiao, J. S. Jiang, and C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Cho, SJ., Susan, M.K. et al. Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects. MRS Online Proceedings Library 887, 8870704 (2006). https://doi.org/10.1557/PROC-0887-Q07-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0887-Q07-04

Navigation