Skip to main content
Log in

Influence of Cu film microstructure on MOCVD growth of BN

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Boron nitride is of great interest as a 2 dimensional (2D) insulator for use as an atomically flat substrate, gate dielectric and tunneling barrier. At this point the most promising and widely used approach for growth of mono-to-few layer BN is metal catalyzed chemical vapor deposition (CVD). Bulk Cu foil has been the most popular metal substrate for growth of h-BN and graphene, as such there are well developed processes for substrate preparation and growth. As an alternative thin Cu films deposited on an insulating substrate have some advantages over foil, including more uniform thermal contact with substrate heater, better mechanical stability, transfer free processing, and selective area growth. However, Cu films deposited on SiO2 present their own unique problems like Cu SiO2 stability and small Cu grain size. Here we present results on the growth on few-layer BN by metal organic chemical vapor deposition (MOCVD) on Cu thin films on SiO2/Si. We explore the effects of substrate preparation and annealing conditions on the Cu morphology in order to understand the impact on the BN. To minimize the effects of Cu SiO2 interdiffusion, we investigate the use of a Ni buffer layers. BN films were studied after transfer to SiO2/Si films using Raman and AFM to determine the impact of Cu film microstructure on the morphology of few layer BN films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Taniguchi, T. Sato, W. Utsumi, T. Kikegawa, and O. Shimomura, Diam. Relat. Matter. 6, 1806 (1997).

    Article  CAS  Google Scholar 

  2. O Tao, C. Yuanping, X. Yuee, Y. Kaike, B. Zhigang, and Z. Jianxin, Nanotechnology 21, 245701 (2010).

    Article  Google Scholar 

  3. A. A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  CAS  Google Scholar 

  4. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, Nano Lett. 10, 3209 (2010).

    Article  CAS  Google Scholar 

  5. L. Changgu, W. Xiaoding, J. W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  Google Scholar 

  6. K. Michel and B. Verberk, Phys. Status Solidi 246, 2802 (2009).

    Article  CAS  Google Scholar 

  7. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Placios, and J. Kong, Nano Lett. 12, 161 (2012).

    Article  Google Scholar 

  8. A. Ismach, H. Chou, D. A. Ferrer, Y. Wu, S. McDonnell, C. H. Floresce, A. Covacevich, C. Pope, R. Piner, M. J. Kim, R. M. Wallace, L. Colombo, and R. S. Ruoff, Nano 6, 6378 (2012).

    CAS  Google Scholar 

  9. J. Lu, P. S. E. Yeo, Y. Zheng, H. Xu, C. K. Gan, M. B. Sullivan, A. H. C. Neto, and K. P. Loh, J. Am. Chem. Soc. 135, 2368 (2013).

    Article  CAS  Google Scholar 

  10. M. P. Levendorf, C. S. Rulz-Vargas, S. Garg, and J. Park, Nano Lett. 9, 4479 (2009).

    Article  CAS  Google Scholar 

  11. D. L. Miler, M. W. Keller, J. M. Shaw, K. P. Rice, R. R. Keller, and K. M. Diederichsen, AIP Advances 3, 082105 (2013).

    Article  Google Scholar 

  12. O. M. Ndwandwe, Q. Y. Hlatshwayo, R. Pretorius Mater. Chem. Phys. 92 487(2005).

    CAS  Google Scholar 

  13. N. Guo, J. Wei, L. Fan, Y. Jia, D. Liang, H. Zhu, K. Wang, D. Wu, Nanotechnology 23, 415605 (2012).

    Article  Google Scholar 

  14. O. Jintsugawa, M. Sakurba, T. Matsuura, and J. Murota, Surf. Interface Anal. 34, 456 (2002).

    Article  CAS  Google Scholar 

  15. P. G. Spizzirri, J-H. Fang, S. Rubanov, E. Gauja, and S. Prawer. arXiv preprint arXiv:1002.2692 (2010).

  16. R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, P. Blake, Small 7, 465 (2011).

    Article  CAS  Google Scholar 

  17. R. Geick, C. H. Perry, G. Rupprecht, Phys. Rev. 146, (1966) 543.

    Article  CAS  Google Scholar 

  18. R. J. Nemanich, S. A. Solin, R. M. Martin, Phys. Rev. B 23, 6348 (1981).

    Article  CAS  Google Scholar 

  19. R. Y. Tay, M. H. Griep, G. Mallick, S. H. Tsang, R. S. Singh, T. Tumlin, E. H. T. Teo, S. P. Karna, Nano Lett. 14, 839 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from the Air Force Office of Scientific Research under task number 13RY03COR (Program Manager Kenneth Goretta).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snure, M., Vangala, S., Shoaf, J. et al. Influence of Cu film microstructure on MOCVD growth of BN. MRS Online Proceedings Library 1726, 43–48 (2014). https://doi.org/10.1557/opl.2015.654

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.654

Navigation