Skip to main content
Log in

Laser Terahertz Emission Spectroscopy of Graphene/InAs Junctions

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We applied laser THz emission spectroscopy to study the effects of monolayer graphene on the THz emission from InAs. THz emission from graphene/InAs varies linearly with the laser excitation power in the low-intensity excitation regime. We found that unlike in graphene/SI-InP junctions, graphene and O2 adsorbates on graphene have no significant effect on the THz emission from graphene/InAs junctions because the THz radiation mechanism in InAs is by the photo-Dember effect, whereas for SI-InP is by the surge current effect. There is also a slight enhancement in the THz emission from both bare InAs and graphene/InAs by UV illumination, which is probably due to the additional photoexcited carriers by UV that somehow enhances the photo-Dember field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.

    Article  CAS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, pp. 183 - 191, 2007.

  3. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Geliert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, p. 192–200, 2012.

  4. H. R. Gutiérrez, N. Perea-López, A. L. Elias, A. Berkdemir, B. Wang, R. Lv, F. López-Urias, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers,” Nano Letters, vol. 13, p. 3447–3454, 2013.

  5. S. M. Notley, “High yield production of photoluminescent tungsten disulphide nanoparticles,” Journal of Colloid and Interface Science, vol. 396, pp. 160–164, 2013.

  6. N. Huo, S. Yang, Z. Wei, S. -S. Li, J. -B. Xia and J. Li, “Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes,” Scientific Reports, vol. 4, p. 5209, 2014.

  7. C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi and Z. Liu, “Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers,” Scientific Reports, vol. 4, p. 5530, 2014.

  8. P. Tassin, T. Koschny, and C.M. Soukoulis, “Graphene for Terahertz Applications,” Science, vol. 341, no. 6146, pp. 620–621, 2013.

  9. P. Tassin, T. Koschny, M. Kafesaki, and C.M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photonics, vol. 6, p. 259–264, 2012.

  10. T. Otsuji, V. Popov, and V. Ryzhii, “Active graphene plasmonics for terahertz device applications,” Journal of Physics D: Applied Physics, vol. 47, p. 094006, 2014.

  11. T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano, vol. 8, no. 2, p. 1086–1101,2014.

  12. Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, “Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy,” Scientific Reports, vol. 4, p. 6046, 2014.

  13. P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P.E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, P.M. Ajayan, T. Zhu, and J. Lou, “Fracture toughness of graphene,” Nature Communications, vol. 5, p. 3782, 2013.

  14. P. Gu and M. Tani, “Terahertz Radiation from Semiconductor Surfaces,” in Terahertz Optoelectronics, Heidelberg, Springer-Verlag Berlin Heidelberg, 2005, pp. 63–97.

  15. M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Physical Review B, vol. 67, p. 195308, 2003.

  16. M. Nakajima, Y. Oda, and T. Suemoto, “Competing terahertz radiation mechanisms in semi-insulating InPat high-density excitation,” Applied Physics Letters, vol. 85, p. 2694, 2004.

  17. M. Nakajima and M. Hangyo, “Study of THz radiation from semiconductor surfaces excited by femtosecond laser pulses,” Semiconductor Science and Technology, vol. 19, pp. S264-S266, 2004.

  18. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” Journal of Applied Physics, vol. 91, p. 5533, 2002.

  19. G. Molis, R. Adomavičius, and A. Krotkus, “Temperature-dependent terahertz radiation from the surfaces of narrow-gap semiconductors illuminated by femtosecond laser pulses,” Physica B, vol. 403, p. 3786–3788, 2008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagsican, F.R., Gonzales, J., Zhang, X. et al. Laser Terahertz Emission Spectroscopy of Graphene/InAs Junctions. MRS Online Proceedings Library 1808, 1–7 (2015). https://doi.org/10.1557/opl.2015.639

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.639

Navigation