Skip to main content

Advertisement

Log in

Electronic and Mechanical Coupling in Elastically Bent ZnO Micro/Nanowires

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Elastic engineering strain has been regarded as a low-cost and continuously variable manner for altering the physical and chemical properties of materials, and it becomes even more important at low-dimensionality because at micro/nanoscale, materials/structures can usually bear exceptionally high elastic strains before failure. The elastic strain effects are therefore greatly magnified in micro/nanoscale structures and should be of great potential in the design of novel functional devices. The purpose of this overview is to present a summary of our recently progress in the energy band engineering of elastically bent ZnO micro/nanowires. First, we present the electronic and mechanical coupling effect in bent ZnO nanowires. Second, we summary the bending strain gradient effect on the near-band-edge (NBE) emission photon energy of bent ZnO micro/nanowires. Third, we show that the strain can induce exciton fine-structure splitting and shift in ZnO microwires. Our recent progresses illustrate that the electronic band structure of ZnO micro/nanowires can be dramatically tuned by elastic strain engineering, and point to potential future applications based on the elastic strain engineering of ZnO micro/nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Feng, X. Qian, C.W. Huang, and J. Li, Nat. Photon. 6, 866 (2012).

    Article  CAS  Google Scholar 

  2. T. Zhu and J. Li, Prog. Mater. Sci. 55, 710 (2010).

    Article  Google Scholar 

  3. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  4. F. Liu, P. Ming, and J. Li, Phys. Rev. B 76, 064120 (2007).

    Article  Google Scholar 

  5. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).

    Article  CAS  Google Scholar 

  6. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).

    Article  CAS  Google Scholar 

  7. L. Wang, K. Zheng, Z. Zhang, and X. Han, Nano Lett. 11, 2382 (2011).

    Article  CAS  Google Scholar 

  8. B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, and X. Han, Nano Lett. 12, 4595 (2012).

    Article  CAS  Google Scholar 

  9. N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. C. Neto, and M. Crommie, Science 329, 544 (2010).

    Article  CAS  Google Scholar 

  10. R. He and P. Yang, Nat. Nanotech. 1, 42 (2006).

    Article  CAS  Google Scholar 

  11. X. Han, G. Jing, X. Zhang, R. Ma, X. Song, J. Xu, Z. Liao, N. Wang, and D. Yu, Nano Res. 2, 553 (2009).

    Article  CAS  Google Scholar 

  12. Z. Liu, J. Wu, W. Duan, M. G. Lagally, and F. Liu, Phys. Rev. Lett. 105, 016802 (2010).

    Article  Google Scholar 

  13. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, and J. C. Grossman, Nat. Nanotech. 4, 732 (2009).

    Article  CAS  Google Scholar 

  14. X.W. Fu, Z.M. Liao, R. Liu, J. Xu, and D. Yu, ACS Nano 7, 8891 (2013).

    Article  CAS  Google Scholar 

  15. C. Dietrich, M. Lange, F. Klüpfel, H. von Wenckstern, R. Schmidt-Grund, and M. Grundmann, Appl. Phys. Lett. 98, 031105 (2011).

    Article  Google Scholar 

  16. H. Z. Xue, N. Pan, M. Li, Y. K. Wu, X. P. Wang, and J. G. Hou, Nanotech. 21 (2010).

  17. S. Xu, W. Guo, S. Du, M. Loy, and N. Wang, Nano Lett. 12, 5802 (2012).

    Article  CAS  Google Scholar 

  18. X.W. Fu, Q. Fu, L. Z. Kou, X. L. Zhu, R. Zhu, J. Xu, Z. M. Liao, Q. Zhao, W. L. Guo, and D. P. Yu, Frontiers of Physics 8, 509 (2013).

    Article  Google Scholar 

  19. Q. Fu, Z. Y. Zhang, L. Kou, P. Wu, X. Han, X. Zhu, J. Gao, J. Xu, Q. Zhao, W. Guo, and D. P. Yu, Nano Res. 4, 308 (2011).

    Article  CAS  Google Scholar 

  20. G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, and H. Riel, Nano Lett. 13, 917 (2013).

    Article  CAS  Google Scholar 

  21. M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, Science 306, 2057 (2004).

    Article  CAS  Google Scholar 

  22. Z. Wang and J. Song, Science 312, 242 (2006).

    Article  CAS  Google Scholar 

  23. Y. Qin, X. Wang, and Z. L. Wang, Nature 451, 809 (2008).

    Article  CAS  Google Scholar 

  24. Z. L. Wang, Adv Mater 24, 4632 (2012).

    Article  CAS  Google Scholar 

  25. G. A. Zhu, R. S. Yang, S. H. Wang, and Z. L. Wang, Nano Lett. 10, 3151 (2010).

    Article  CAS  Google Scholar 

  26. S. Xu, B. J. Hansen, and Z. L. Wang, Nat. commun. 1, 93 (2010).

    Article  Google Scholar 

  27. W. Wang, Q. Zhao, H. Li, H. Wu, D. Zou, and D. Yu, Adv. Funct. Mater. 22, 2775 (2012).

    Article  CAS  Google Scholar 

  28. X. W. Fu, Z. M. Liao, J. Xu, X. S. Wu, W. Guo, and D. P. Yu, Nanoscale 5, 916 (2013).

    Article  CAS  Google Scholar 

  29. H. Li, Q. Zhao, W. Wang, H. Dong, D. Xu, G. Zou, H. Duan, and D. Yu, Nano Lett. 13, 1271 (2013).

    Article  CAS  Google Scholar 

  30. X. Han, L. Kou, X. Lang, J. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. Liao, X. Zhang, W. L. Guo, and D. Yu, Adv. Mater. 21, 4937 (2009).

    Article  CAS  Google Scholar 

  31. F. Corsetti, M. Fernández-Serra, J. M. Soler, and E. Artacho, J. Phys. Condensed Mater. 25, 435504 (2013).

    Article  Google Scholar 

  32. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  33. J. B. Xia, J. Lumin. 70, 120 (1996).

    Article  CAS  Google Scholar 

  34. X. Han, L. Kou, Z. Zhang, Z. Zhang, X. Zhu, J. Xu, Z. Liao, W. Guo, and D. Yu, Adv. Mater. 24, 4707 (2012).

    Article  CAS  Google Scholar 

  35. Z. Liao, H. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, and D. Yu, Scientific Reports 2 (2012).

Download references

acknowledgments

This work is supported by NSFC (Grant No. 11174009, 11234001), the National 973 Programs of China (2013CB921900, 2012CB619402). The authors are also grateful to the financial support from the Sino-Swiss Science and Technology Cooperation Program (2010DFA01810), and NSFC/RGC (N HKUST615/06). We thank Prof. Wanlin Guo for useful discussions, and Dr. Jun Xu for experimental help.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Liao, Z. & Yu, D. Electronic and Mechanical Coupling in Elastically Bent ZnO Micro/Nanowires. MRS Online Proceedings Library 1664, 1–6 (2014). https://doi.org/10.1557/opl.2014.324

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.324

Navigation