Skip to main content

Advertisement

Log in

Protic ionic liquid-based thermoelectrochemical cells for the harvesting of waste heat.

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The ability to efficiently harvest heat as a source of sustainable energy would make a significant contribution to reducing our current reliance on fossil fuels. Waste heat sources, such as those produced in industrial processes or through geothermal activity, are extensive, often continuous, and at present severely underutilised. Thermoelectrochemical cells offer an alternative design to the traditional semiconductor-based thermoelectric devices and offer thepromise of continuous and cheap operation at moderate temperatures, low maintenance and with no carbon emissions. They utilise two electrodes, held at different temperatures, separated by an electrolyte containing a redox couple. It is the temperature dependence of the electrochemical redox potential that generates the potential difference across the device as a result of the appliedtemperature difference. The magnitude of this redox potential temperature dependence is given by the Seebeck coefficient, Se. Until recently, research into thermoelectrochemical cells had primarily focused on aqueous media, predominantly with the Fe(CN)63-/4- redox couple.[1] However, the good thermal and electrochemical stability, non-volatility and non-flammability ofmany ionic liquids make them promising alternative electrolytes for these devices. The use of ionic liquid (IL) electrolytes offers potential advantages that include increased thermoelectrochemical device efficiencies and lifetimes and the ability to utilise low temperature (often “waste”) heat sources in the 100 – 200 °C temperature range.[2] Here we discuss our research into the use of the Fe(CN)63-/4- redox couple in protic IL electrolytes, with different amounts of added water, in a thermoelectrochemical device with platinum and single walled carbon nanotube (SWNT) electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Hu, B. A. Cola, N. Haram, J. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas, A. Gestos, M. E. dela Cruz, J. P. Ferraris, A. A. Zakhidov and R. H. Baughman, Nano Letters 10 (3), 838–846 (2010).

    Article  CAS  Google Scholar 

  2. T. J. Abraham, D. R. MacFarlane and J. M. Pringle, Chemical Communications 47 (22), 6260–6262 (2011).

    Article  CAS  Google Scholar 

  3. Q. Schiermeier, J. Tollefson, T. Scully, A. Witze and O. Morton, Nature 454 (7206), 816–823 (2008).

    Article  CAS  Google Scholar 

  4. M. Telkes, Journal of Applied Physics 18, 1116–1127 (1947).

    Article  CAS  Google Scholar 

  5. T. I. Quickenden and C. F. Vernon, Solar Energy 36 (1), 63–72 (1986).

    Article  CAS  Google Scholar 

  6. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature 489 (7416), 414–418 (2012).

    Article  CAS  Google Scholar 

  7. H. L. Chum, R. A. Osteryoung, Review of thermally regenerative electrochemical systems, (1981).

  8. T. I. Quickenden and Y. Mua, Journal of the Electrochemical Society 142 (11), 3985–3994 (1995).

    Article  CAS  Google Scholar 

  9. Y. V. Kuzminskii, V. A. Zasukha and G. Y. Kuzminskaya, Journal of Power Sources 52 (2), 231–242 (1994).

    Article  CAS  Google Scholar 

  10. T. Migita, K. Tachikawa, Y. Katayama, T. Miura, Electrochemistry 77 (8), 639–641 (2009).

    Article  CAS  Google Scholar 

  11. J. N. Agar, W.G. Breck, Transactions of the Faraday Society. 53 (167) (1957).

  12. E. L. Yee, R. J. Cave, K. L. Guyer, P. D. Tyma and M. J. Weaver, Journal of the American Chemical Society 101 (5), 1131–1137 (1979).

    Article  CAS  Google Scholar 

  13. S. Sahami and M. J. Weaver, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 122, 171–181 (1981).

    Article  CAS  Google Scholar 

  14. J. S. Wilkes, M. J. Zaworotko, Chemical Communications, 965 (1992).

  15. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis. (Wiley-VCH Verlag, Weinheim), (1998).

    Google Scholar 

  16. W. Xu and C. A. Angell, Science 302 (5644), 422–425 (2003).

    Article  CAS  Google Scholar 

  17. K. Ohno, Electrochemical Aspects of Ionic Liquids, (John Wiley & Sons, Inc. Hoboken, N.J.) (2005).

    Book  Google Scholar 

  18. K. R. Seddon, M. J. Earle, Pure Applied Chemistry 72 (7), 1391–1398 (2000).

    Article  Google Scholar 

  19. C. Zhao, G. Burrell, A. A. J. Torriero, F. Separovic, N. F. Dunlop, D. R. MacFarlane and A. M. Bond, Journal of Physical Chemistry B 112 (23), 6923–6936 (2008).

    Article  CAS  Google Scholar 

  20. K. Fujita, M. Forsyth, D. R. MacFarlane, R. W. Reid and G. D. Elliott, Biotechnology and Bioengineering 94 (6), 1209–1213 (2006).

    Article  CAS  Google Scholar 

  21. K. K. Laali and V. J. Gettwert, Journal of Organic Chemistry 66 (1), 35–40 (2001).

    Article  CAS  Google Scholar 

  22. M. Picquet, I. Tkatchenko, I. Tommasi, P. Wasserscheid and J. Zimmermann, Advanced Synthesis & Catalysis 345 (8), 959–962 (2003).

    Article  CAS  Google Scholar 

  23. P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Graetzel, Inorganic Chemistry 35 (5), 1168–1178 (1996).

    Article  CAS  Google Scholar 

  24. W. M. Flarsheim, Y. M. Tsou, I. Trachtenberg, K. P. Johnson and A. J. Bard, Journal of Physical Chemistry 90, 3857–3862 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, T.J., MacFarlane, D.R., Baughman, R.H. et al. Protic ionic liquid-based thermoelectrochemical cells for the harvesting of waste heat.. MRS Online Proceedings Library 1575, 408 (2013). https://doi.org/10.1557/opl.2013.647

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.647

Navigation