Skip to main content
Log in

Quantitative Analysis of Raman Spectra in Si/SiGe Nanostructures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present comprehensive quantitative analysis of Raman spectra in two-(Si/SiGe superlattices) and three-(Si/SiGe cluster multilayers) dimensional nanostructures. We find that the Raman spectra baseline is due to the sample surface imperfection and instrumental response associated with the stray light. The Raman signal intensity is analyzed, and Ge composition is calculated and compared with the experimental data. The local sample temperature and thermal conductivity are calculated, and the spectrum of longitudinal acoustic phonons is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Schäffler, Semicond. Sci. Technol. 12, 1515 (1997).

    Article  Google Scholar 

  2. L. Pavesi, L.Dal Negro, C. Mazzoleni, G. Franzò and F. Priolo, Nature, 408, 440 (2000).

    Article  CAS  Google Scholar 

  3. H.-Y. Chang and L. Tsybeskov, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Eds. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010), p. 105.

  4. K.-T. Tsen, in Ultrafast Dynamical Processes in Semiconductors, edited by K.-T. Tsen (Springer Science Publishers, New York, 2004), p. 222.

  5. J.B. Renucci, M.A. Renucci and M. Cardona, Solid State Commun. 9, 1651 (1971).

    Article  CAS  Google Scholar 

  6. W.J. Brya, Solid State Commun. 12, 253 (1973).

    Article  CAS  Google Scholar 

  7. M.I. Alonso and K. Winer, Phys. Rev. B 39, 10056 (1989).

    Article  CAS  Google Scholar 

  8. P.M. Mooney, F.H. Dacol, J.C. Tsang and J.O. Chu, Appl. Phys. Lett. 62, 2069 (1993).

    Article  CAS  Google Scholar 

  9. F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Känel, E. Wintersberger, J. Stangl and G. Bauer, J. Appl. Phys. 103, 093521 (2008).

    Article  Google Scholar 

  10. F. Cerdeira, A. Pinczuk, J.C. Bean, B. Batlogg and B.A. Wilson, Appl. Phys. Lett. 45, 1138 (1984).

    Article  CAS  Google Scholar 

  11. H.K. Shin, D.J. Lockwood and J.-M. Baribeau, Solid State Commun. 114, 505 (2000).

    Article  CAS  Google Scholar 

  12. J.L. Liu, J. Wan, Z.M. Jiang, A. Khitun, K.L. Wang and D.P. Yu, J. Appl. Phys. 92, 6804 (2002).

    Article  CAS  Google Scholar 

  13. P.H. Tan, K. Brunner, D. Bougeard and G. Abstreiter, Phys. Rev. B 68, 125302 (2003).

    Article  Google Scholar 

  14. A.V. Baranov, A.V. Fedorov, T.S. Perova, R.A. Moore, V. Yam, D. Bouchier, V. Le Thanh and K. Berwick, Phys. Rev. B 73, 075322 (2006).

    Article  Google Scholar 

  15. T.S. Perova, J. Wasyluk, K. Lyutovich, E. Kasper, M. Oehme, K. Rode and A. Waldron, J. Appl. Phys. 109, 033502 (2011).

    Article  Google Scholar 

  16. T.R. Hart, R.L. Aggarwal and B. Lax, Phys. Rev. B 1, 638 (1970).

    Article  Google Scholar 

  17. J. Menéndez and M. Cardona, Phys. Rev. B 29, 2051 (1984).

    Article  Google Scholar 

  18. H.H. Burke and I.P. Herman, Phys. Rev. B 48, 15016 (1993).

    Article  CAS  Google Scholar 

  19. H.-Y. Chang, L. Tsybeskov, A. Sirenko, D.J. Lockwood, J.-M. Baribeau, X. Wu and M.W.C. Dharma-wardana, MRS Symposium Proceedings 1145, 1145-MM12-01 (2009).

    Google Scholar 

  20. A.S. Barker, Jr., J.L. Merz and A.C. Gossard, Phys. Rev. B, 17, 3181 (1978).

    Article  CAS  Google Scholar 

  21. C. Colvard, T.A. Gant, M.V. Klein, R. Merlin, R. Fischer, H. Morkoc and A.C. Gossard, Phys. Rev. B 31, 2080 (1985).

    Article  CAS  Google Scholar 

  22. J. Sapriel, J.C. Michel, J.C. Tolédano, R. Vacher, J. Kervarec and A. Regreny, Phys. Rev. B 28, 2007 (1983).

    Article  CAS  Google Scholar 

  23. D.J. Lockwood, M.W.C. Dharma-wardana, J.-M. Baribeau and D.C. Houghton, Phys. Rev. B 35, 2243 (1987).

    Article  CAS  Google Scholar 

  24. Z. Yang, J.-L. Liu, Y. Shi, Y.-D. Zheng and K.L. Wang, J. Nanoelectronics and Optoelectronics 1, 86 (2006).

    Article  Google Scholar 

  25. S.M. Rytov, Akust. Zh. 2, 71 (1956).

    Google Scholar 

  26. J.-M. Baribeau, X. Wu, N.L. Rowell, and D.J. Lockwood, J. Phys.: Condens. Matter, 18, R139 (2006).

    CAS  Google Scholar 

  27. T.I. Kamins and D.P. Basile, J. Electron. Mater. 29, 570 (2000).

    Article  CAS  Google Scholar 

  28. P.A. Temple and C.E. Hathaway, Phys. Rev. B 7, 3685 (1973).

    Article  CAS  Google Scholar 

  29. M. Holtz, W.M. Duncan, S. Zollner and R. Liu, J Appl. Phys. 88, 2523 (2000).

    Article  CAS  Google Scholar 

  30. D.J. Lockwood and J.-M. Baribeau, Phys. Rev. B 45, 8565 (1992).

    Article  CAS  Google Scholar 

  31. J.C. Tsang, P.M. Mooney, F. Dacol and J.O. Chu, J. Appl. Phys. 75, 8098 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mala, S., Tsybeskov, L., Baribeau, JM. et al. Quantitative Analysis of Raman Spectra in Si/SiGe Nanostructures. MRS Online Proceedings Library 1510, 1 (2013). https://doi.org/10.1557/opl.2013.271

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.271

Navigation