Skip to main content
Log in

Gas Phase Electrodeposition: A Programmable Localized Deposition Method for Rapid Combinatorial Investigation of Nanostuctured Devices and 3D Bulk Heterojunction Photovoltaic Cells

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This article applies a recently discovered gas phase nanocluster electrodeposition process to the formation and combinatorial improvement of 3D bulk heterojunction photovoltaic cells. The gas phase deposition process used here is a single reactor system that forms charged nanoclusters (gold, silver, tungsten, and platinum) at atmospheric pressure. The clusters deposit onto selected surface areas with sub 100 nm lateral resolution using a programmable concept similar to liquid phase electrodeposition such that biased electrodes turn ON or OFF deposition in selected areas. Continued deposition of the nanoparticles results in a tower array with different lengths and density on a single substrate which is used as contacts to the active organic layer of 3D bulk heterojunction photovoltaic cells. Applying a combinatorial approach identifies in a massively parallel way electrode designs and topologies that improve light scattering, absorption, and minority carrier extraction. We report photovoltaic cells with higher and denser nanocluster tower arrays that improve the power conversion efficiency of bulk heterojunction photovoltaic cells by approximately 47.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Taton, C. Mirkin, R. Letsinger, Science, 289 (2000) 1757–1760.

    Article  CAS  Google Scholar 

  2. H. Jacobs, S. Campbell, M. Steward, Advanced Materials, 14 (2002) 1553–1557.

    Article  CAS  Google Scholar 

  3. W. Liu, Journal of bioscience and bioengineering, 102 (2006) 1–7.

    Article  CAS  Google Scholar 

  4. L. Pavesi, L. Negro, C. Mazzoleni, G. Franzo, F. Priolo, Nature, 408 (2000) 440–444.

    Article  CAS  Google Scholar 

  5. S. McDonald, G. Konstantatos, S. Zhang, P. Cyr, E. Klem, L. Levina, E. Sargent, Nature Materials, 4 (2005) 138–142.

    Article  CAS  Google Scholar 

  6. Z. Pan, Z. Dai, Z. Wang, Science, 291 (2001) 1947–1949.

    Article  CAS  Google Scholar 

  7. Y. Feldman, E. Wasserman, D. Srolovitz, R. Tenne, Science, 267 (1995) 222–225.

    Article  CAS  Google Scholar 

  8. M. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Advanced Materials, 13 (2001) 113–116.

    Article  CAS  Google Scholar 

  9. A. Morales, C. Lieber, Science, 279 (1998) 208–211.

    Article  CAS  Google Scholar 

  10. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H. Hartnagel, Science, 285 (1999) 1551–1553.

    Article  CAS  Google Scholar 

  11. S. Iijima, Nature, 354 (1991) 56–58.

    Article  CAS  Google Scholar 

  12. S. Schwyn, E. Garwin, A. Schmidt-Ott, Journal of Aerosol Science, 19 (1988) 639–642.

    Article  CAS  Google Scholar 

  13. R. Camata, H. Atwater, K. Vahala, R. Flagan, Applied Physics Letters, 68 (1996) 3162–3164.

    Article  CAS  Google Scholar 

  14. A. Zonnevylle, C. Hagen, P. Kruit, A. Schmidt-Ott, Microelectronic Engineering, 86 (2009) 803–805.

    Article  CAS  Google Scholar 

  15. J. Cole, E. Lin, C. Barry, H. Jacobs, Applied Physics Letters, 95 (2009) 113101.

    Article  CAS  Google Scholar 

  16. N. Aleksandrov, E. Bazelyan, Journal of Physics D: Applied Physics, 29 (1996) 740–752.

    Article  CAS  Google Scholar 

  17. N. Aleksandrov, E. Bazelyan, Plasma Sources Science and Technology, 8 (1999) 285–294.

    Article  CAS  Google Scholar 

  18. A. Rodríguez, W. Morgan, K. Touryan, W. Moeny, T. Martin, Journal of Applied Physics, 70 (1991) 2015–2022.

    Article  Google Scholar 

  19. Y. Shen, D.B. Jacobs, G.G. Malliaras, G. Koley, M.G. Spencer, A. Ioannidis, Advanced Materials, 13 (2001) 1234–1238.

    Article  CAS  Google Scholar 

  20. L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, J. Hummelen, Advanced Materials, 12 (2000) 189–195.

    Article  CAS  Google Scholar 

  21. S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, D. Kim, Applied Physics Letters, 91 (2007) 173509.

    Article  CAS  Google Scholar 

  22. B. Kayes, H. Atwater, N. Lewis, Journal of Applied Physics, 97 (2005) 114302.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support of this work by NSF DMI-0755995, NSF DMI0621137, and NSF DMI-0556161.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, EC., Fang, J. & Jacobs, H.O. Gas Phase Electrodeposition: A Programmable Localized Deposition Method for Rapid Combinatorial Investigation of Nanostuctured Devices and 3D Bulk Heterojunction Photovoltaic Cells. MRS Online Proceedings Library 1439, 57–62 (2012). https://doi.org/10.1557/opl.2012.846

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.846

Navigation