Skip to main content

Advertisement

Log in

Potential Bone Replacement Materials Prepared by Two Methods

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Natural and synthetic hydroxyapatite (HA) scaffolds for potential load-bearing bone implants were fabricated by two methods. The natural scaffolds were formed by heating bovine cancellous bone at 1325°C, which removed the organic and sintered the HA. The synthetic scaffolds were prepared by freeze-casting HA powders, using different solid loadings (20–35 vol.%) and cooling rates (1–10°C/min). Both types of scaffolds were infiltrated with polymethylmethacrylate (PMMA). The porosity, pore size, and compressive mechanical properties of the natural and synthetic scaffolds were investigated and compared to that of natural cortical and cancellous bone. Prior to infiltration, the sintered cancellous scaffolds exhibited pore sizes of 100–300 μm, a strength of 0.4–9.7 MPa, and a Young’s modulus of 0.1–1.2 GPa. The freeze-casted scaffolds had pore sizes of 10–50 μm, strengths of 0.7–95.1 MPa, and Young’s moduli of 0.1–19.2 GPa. When infiltrated with PMMA, the cancellous bone- PMMA composite showed a strength of 55 MPa and a Young’s modulus of 4.5 GPa. Preliminary data for the synthetic HA-PMMA composite showed a strength of 42 MPa and a modulus of 0.8 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weiner, H.D. Wagner, Annu Rev Mater Sci 28, 271–298 (1998).

    Article  CAS  Google Scholar 

  2. T.M. Keaveny, E.F. Morgan, G.L. Niebur, O.C. Yeh, Annu Rev Biomed Eng 3, 307–333 (2001).

    Article  CAS  Google Scholar 

  3. E. Novitskaya, P.-Y. Chen, S. Lee, A. Castro-Ceseña, G. Hirata, V. Lubarda, J. McKittrick, Acta Biomater 7(8), 3170–3177 (2011).

    Article  CAS  Google Scholar 

  4. P.-Y. Chen, J. McKittrick, J Mech Behav Biomed Mater 4(7), 961–973 (2011).

    Article  CAS  Google Scholar 

  5. Y. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, M. Murata, et al., J Biomed Mater Res 39(2), 190–199 (1998).

    Article  CAS  Google Scholar 

  6. Y.S. Chang, H.O. Gu, M. Kobayashi, M. Oka, J Arthroplasty 13(7), 816–825 (1998).

    Article  CAS  Google Scholar 

  7. J.X. Lu, F.K. Anselme, P. Hardouin, A. Gallur, M. Descamps, B. Thierry, J Mater Sci 10(2), 111–120 (1999).

    CAS  Google Scholar 

  8. S.F. Hulbert, F.A. Young, R.S. Mathews, J.J. Klawitter, C.D. Talbert, F.H. Stelling, J Biomed Mater Res 4(3), 433–456 (1970).

    Article  CAS  Google Scholar 

  9. B.S. Chang, C.K. Lee, K.S. Hong, H.J. Youn, H.S. Ryu, S.S. Chung, K.W. Park, Biomaterials 21(12), 1291–1298 (2000).

    Article  CAS  Google Scholar 

  10. J.R. Woodard, A. J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.C. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison, A.J.W. Johnson, Biomater 28(1), 45–54 (2007).

    Article  CAS  Google Scholar 

  11. S.S. Liao, F.Z. Cui, Q.L. Feng, J Biomed Mater Res B 69B(2), 158–165 (2004).

    Article  CAS  Google Scholar 

  12. Z. Xiong, Y. Yan, S Wang, R. Zhang, C. Zhang, Scripta Mater 46(11), 771–776 (2002).

    Article  CAS  Google Scholar 

  13. C.Y. Lin, N. Kikuchi, S.J. Hollister, J Biomech 37(5), 623–636 (2004).

    Article  Google Scholar 

  14. J.M. Taboas, R.D. Maddox, P.H. Krebsbach, S.J. Hollister, Biomater 24(1), 181–194 (2003).

    Article  CAS  Google Scholar 

  15. H.R.R. Ramay, M. Zhang, Biomater 25(21), 5171–5180 (2004).

    Article  CAS  Google Scholar 

  16. S. Deville, Adv Eng Mater 10(3), 155–169 (2008).

    Article  CAS  Google Scholar 

  17. M. Azami, F. Moztarzadeh, M. Tahriri, J Porous Mater 17, 313–320 (2010).

    Article  CAS  Google Scholar 

  18. S. Blindow, M. Pulkin, D. Koch, Adv Eng Mater 11(11), 875–884 (2009).

    Article  CAS  Google Scholar 

  19. S. Deville, E. Saiz, A.P. Tomsia, Biomaterials 27(32), 5480–5489 (2006).

    Article  CAS  Google Scholar 

  20. Q. Fu, M.N. Mohamed, F. Dogan, B.S. Bal, Biomed Mater 3(2), (2008).

    Google Scholar 

  21. Q. Fu, M.N. Rahaman, B.S. Bal, R.F. Brown, J Mater Sci-Mater M 32(2), 86–95 (2009).

    Google Scholar 

  22. E.J. Lee, Y.H. Koh, B.H. Yoon, H.E. Kim, H.W. Kim, Mater Lett 61(11-12), 2270–2273 (2007).

    Article  CAS  Google Scholar 

  23. T. Moritz, H.-J. Richter, J Am Ceram Soc, 89(8), 2394–2398 (2009).

    Article  Google Scholar 

  24. Y. Suetsugu, Y. Hotta, M. Iwasashi, M. Sakane, M. Kikuchi, T. Ikoma, T. Higaki, N. Ochiai, J. Tanaka, Key Eng Mater 330-332, 1003–1006 (2007).

    Article  Google Scholar 

  25. T.Y. Yang, J.M. Lee, S.Y. Yoon, H.C. Park, J Mater Sci-Mater M 21(5), 1495–1502 (2010).

    Article  CAS  Google Scholar 

  26. B.H. Yoon, C.S. Park, H.E. Kim, Y.H. Koh, Mater Lett 62(10-11), 1700–1703 (2008).

    Article  CAS  Google Scholar 

  27. Y. Zhang, K. Zuo, Y.-P. Zeng, Ceramics International 35, 2151–2154 (2009).

    Article  CAS  Google Scholar 

  28. K.H. Zuo, Y.P. Zeng, D.L. Jiang, Mater Sci Eng C-Mater Bio 30(2), 283–287 (2010).

    Article  CAS  Google Scholar 

  29. K.H. Zuo, Y.A. Zhang, Y.P. Zeng, D.L. Jiang, Ceram Int 37(1), 407–410 (2011).

    Article  CAS  Google Scholar 

  30. U.G.K. Wegst, M. Schecter, A.E. Donius, and P.M Hunger. Philoso T R Soc A 368, 2099–2121 (2010).

    Article  CAS  Google Scholar 

  31. M.C. Flemings, Solidification Processing, 1 st ed. (McGraw-Hill, New York, 1974) p. 100.

    Google Scholar 

  32. S. Deville, E. Saiz, A.P. Tomsia, Acta Mater 55(6), 1965–1974 (2007).

    Article  CAS  Google Scholar 

  33. M.E. Launey, E. Munch, D.H. Alsem, H.B. Barth, E. Saiz, A.P. Tomsia, R.O. Ritchie, Acta Mater 57(10), 2919–2932 (2009).

    Article  CAS  Google Scholar 

  34. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Science 322(5907), 1516–1520 (2008).

    Article  CAS  Google Scholar 

  35. F.J. Martinez-Vazquez, F.H. Perera, P. Mirand, A. Pajares, F. Guiberteau, Acta Biomater 6(11), 4361–4368 (2010).

    Article  CAS  Google Scholar 

  36. X. Miao, W.-K. Lim, X. Huang, Y. Chen, Materials Letters 59, 4000–4005 (2005).M. Peroglio, L. Germillard, C. Gauthier, L. Chazeau, S. Verrier, M. Alini, J. Chevalier, Acta Biomater 6(11), 4369–4379(2010).

    Article  CAS  Google Scholar 

  37. M. Peroglio, L. Germillard, C. Gauthier, L. Chazeau, S. Verrier, M. Alini, J. Chevalier, Acta Biomater 6(11), 4369–4379 (2010).

    Article  CAS  Google Scholar 

  38. S. Sharifi, Y. Shafieyan, H. Mirzadeh, S. Bagheri-Khoulenjani, S.M. Rabiee, M. Imani, M. Atai, M.A. Shokrgozar, A. Hatampoor, J Biomed Mater Res A 98A(2), 257–267 (2011).

    Article  CAS  Google Scholar 

  39. G. Pezzotti, S.M.F. Asmus, L.P. Ferroni, S. Miki, J Mater Sci-Mater M 13(8), 783–787 (2002).

    Article  CAS  Google Scholar 

  40. L.L. Hench, J Am Ceram Soc 74(7), 1487–1510 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ryan Anderson (CalIT2, UCSD) for the help in scanning electron microscopy. This work is supported by the National Science Foundation, Ceramics Program Grant 1006931.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Porter, M., Wasko, S. et al. Potential Bone Replacement Materials Prepared by Two Methods. MRS Online Proceedings Library 1418, 177–188 (2012). https://doi.org/10.1557/opl.2012.671

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.671

Navigation