Skip to main content
Log in

Characterization on the Viscoelastic Property of PDMS in the Frequency Domain

  • Materials And Sensors For Biomedical Applications
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A key issue in using Polydimethylsiloxane (PDMS) based micropillars as cellular force transducers is obtaining an accurate characterization of mechanical properties. The Young’s modulus of PDMS has been extended from a constant in the ideal elastic case to a time-dependent function in the viscoelastic case. However, the frequency domain information is of more practical interest in interpreting the complex cell contraction behavior. In this paper, we reevaluated the Young’s relaxation modulus in the time domain by using more robust fitting algorithms than previous reports, and investigated the storage and loss moduli in the frequency domain using the Fourier transform technique. With the use of the frequency domain modulus and the deflection of micropillars in the Fourier series, the force calculation can be much simplified by converting a convolution in the time domain to a multiplication in the frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju and C. S. Chen, Proc. Natl. Acad. Sci. USA. 100, 1484–1489 (2003).

    Article  CAS  Google Scholar 

  2. Y. Zhao and X. Zhang, 18th IEEE MEMS, Miami Beach, FL, 398–404 (2005).

    Google Scholar 

  3. X. Zheng and X. Zhang, J. Micromech. Microeng. 18, 125006 (2008).

    Article  Google Scholar 

  4. Y. Xiang and D. A. LaVan, Appl. Phys. Lett. 90, 133901 (2007).

    Article  Google Scholar 

  5. I. K. Lin, K. S. Ou, Y. M. Liao, Y. Liu, K. S. Chen and X. Zhang, J. Microelectromech. Syst. 18, 1087–1099 (2009).

    Article  CAS  Google Scholar 

  6. I. K. Lin, Y. M. Liao, Y. Liu, K. S. Ou, K. S. Chen and X. Zhang, Appl. Phys. Lett. 93, 251907 (2008).

    Article  Google Scholar 

  7. P. Du, I. K. Lin, H. Lu and X. Zhang, J. Micromech. Microeng. 20, 095016 (2010).

    Article  Google Scholar 

  8. G. Huang, B. Wang and H. Lu, Mech. Time-Depend. Mater. 8, 345–364 (2004).

    Article  CAS  Google Scholar 

  9. C. C. White, M. R. Vanlandingham, P. L. Drzal, N. K. Chang and S. H. Chang, J. Polym. Sci. Pt. B-Polym. Phys. 43, 1812–1824 (2005).

    Article  CAS  Google Scholar 

  10. E. G. Herbert, W. C. Oliver and G. M. Pharr, J. Phys. D Appl. Phys. 41, 074021 (2008).

    Article  Google Scholar 

  11. E. G. Herbert, W. C. Oliver, A. Lumsdaine and G. M. Pharr, J. Mater. Res. 24, 626–637 (2009).

    Article  CAS  Google Scholar 

  12. J. Le Rouzic, P. Delobelle, P. Vairac and B. Cretin, Eur. Phys. J.-Appl. Phys. 48, 14 (2009).

    Article  Google Scholar 

  13. C. L. Wu, H. C. Lin, J. S. Hsu, M. C. Yip and W. L. Fang, Thin Solid Films 517, 4895–4901 (2009).

    Article  CAS  Google Scholar 

  14. H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity, An Introduction. (Springer, New York, 2008).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, P., Lin, IK., Lu, H. et al. Characterization on the Viscoelastic Property of PDMS in the Frequency Domain. MRS Online Proceedings Library 1301, 285–290 (2011). https://doi.org/10.1557/opl.2011.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2011.78

Navigation