Skip to main content
Log in

Simulation of the Mechanical Behavior of White Matter Using a Micromechanics Finite Element Method

  • Multiscale Mechanics of Hierarchical Biological, Bioinspired, and Biomedical Materials
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The atypical mechanical behavior of white matter and its influence on the mechanical properties of brain tissue necessitate adoption of a mutli-scale model of white matter for accurate computational analysis. Herein, we present a micromechanical analysis coupled with finite elements into a biomechanical interacting model of white matter. A representation of the white matter of central nervous system is identified and its microstructure is generated. The geometric descriptions of the axon and the surrounding matrix are obtained from neurofilament immunohistochemistry images. Consecutively, linear elastic material constitutive models are applied to describe the behavior of axons and their surrounding matrix subjected to small deformations. This model facilitates determination of the tissue’s stress and strain fields, and enables an understanding of the effects of axon undulation on local fields. The fundamental nature of the model enables future scale-up for structural tissue analysis and predictions of axon damage at the microscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Margulies, D.F. Meaney, L.E. Bilston, L.E. Thibault, N.G. Campeau, and S.J. Riederer, in Proceedings of International IRCOBI Conference on the Biomechanics of Impacts, Verona, Italy, 1992.

    Google Scholar 

  2. T.A. Gennarelli, L.E. Thibault, R. Tipperman, G. Tomei, R. Sergot, M. Brown, W.L. Maxwell, D.I. Graham, J.H. Adams, A. Irvine, L.M. Gennarelli, A.C. Duhaime, R. Boock, and J. Greenberg, Journal of Neurosurgery 71, 244 (1987).

    Article  Google Scholar 

  3. L. Voo, S. Kumaresan, F. Pintar, N. Yoganandan, and A. Sances, Medical and Biological Engineering and Computing 34, 375 (1996).

    Article  CAS  Google Scholar 

  4. A.C. Bain and D.F. Meaney, Journal of Biomechanical Engineering 122, 615 (2000).

    Article  CAS  Google Scholar 

  5. M.T. Prange and S.S. Margulies, Journal of Biomechanical Engineering 124, 244 (2002).

    Article  Google Scholar 

  6. F.A. Pintar, S. Kumaresan, N. Yoganandan, A. Yang, B. Stemper, and T.A. Gennarelli, Biomed Sci Instrum, 429 (2001).

  7. J.T. Maikos, Z. Qian, D. Metaxas, and D.I. Shreiber, Journal of Neurotrauma 25, 795 (2008).

    Article  Google Scholar 

  8. L. Zhang, K.H. Yang, and A.I. King, Journal of Biomechanical Engineering 126, 226 (2004).

    Article  Google Scholar 

  9. Q. Zhu, M. Prange, and S. Margulies, Developmental Neuroscience 28, 388 (2006).

    Article  CAS  Google Scholar 

  10. T. El Sayed, A. Mota, F. Fraternali, and M. Ortiz, Computer Methods in Applied Mechanics and Engineering 197, 4692 (2008).

    Article  Google Scholar 

  11. H. Hao and D.I. Shreiber, Journal of Biomechanical Engineering 129, 511 (2007).

    Article  Google Scholar 

  12. D.I. Shreiber, H. Hao, and R.A. Elias, Biomechanics and Modeling in Mechanobiology 8, 311 (2009).

    Article  Google Scholar 

  13. G. Karami, N. Grundman, N. Abolfathi, A. Naik, and M. Ziejewski, Journal of the Mechanical Behavior of Biomedical Materials 2, 243 (2009).

    Article  CAS  Google Scholar 

  14. A.C. Bain, D.I. Shreiber, and D.F. Meaney, Transactions of the ASME 125, 798 (2003).

    Google Scholar 

  15. R. Bernal, P.A. Pullarkat, and F. Melo, Physical Review Letters 99, 018301 (2007).

    Article  Google Scholar 

  16. Y. Pan, L. Iorga, and A.A. Pelegri, Composites Science and Technology 68, 2792 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y., Pelegri, A.A. & Shreiber, D.I. Simulation of the Mechanical Behavior of White Matter Using a Micromechanics Finite Element Method. MRS Online Proceedings Library 1301, 87–92 (2011). https://doi.org/10.1557/opl.2011.565

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2011.565

Navigation