Skip to main content
Log in

Novel Lead Telluride Based Thermoelectric Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

PbTe-PbS materials are promising for thermoelectric power generation applications. For the composition of (Pb0.95Sn0.05Te)0.92(PbS)0.08 nanostructuring from nucleation and growth and spinodal decomposition has been reported along with thermal conductivity of approximately 1.1 W/m·K at 650 K [1]. Based on temperature-dependent measurements of electrical conductivity, thermopower, and thermal conductivity, the thermoelectric figure of merit, ZT, are ~1.5 at 650 K for cast ingots.

To develop larger quantities of material for device fabrication, advancement in the synthesis, processing and production of (Pb0.95Sn0.05Te)0.92(PbS)0.08 is necessary. Powder processing of samples is a well-known technique for increasing sample strength, and uniformity. In this presentation, we show sample fabrication and processing details of pulsed electric current sintering (PECS) processed (Pb0.95Sn0.05Te)0.92(PbS)0.08 materials and their thermoelectric properties along with the latest advancements in the preparation of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Androulakis, C. H. Lin, H. J. Kong, C. Uher, C. I. Wu, T. Hogan, B. A. Cook, T. Caillat, K. M. Paraskevopoulos, M. G. Kanatzidis, “Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: Enhanced performance in Pb1-xSnxTe-PbS” J. Am. Chem. Soc, 129(31), pp9780–9788, 2007.

    Article  CAS  Google Scholar 

  2. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, 413(6856), pp.597–602, 2001.

    Article  CAS  Google Scholar 

  3. T. C Harman, P. J Taylor, M. P. Walsh, B. E. LaForge, “Quantum dot superlattice thermoelectric materials and devices,” Science, 297(5590), pp2229–2232, 2002.

    Article  CAS  Google Scholar 

  4. Y. Y. Wang, N. S. Rogado, R. J. Cava, N. P. Ong, “Spin entropy as the likely source of enhanced thermopower in NaxCo2O4” Nature, 423(6938), pp425–428, 2003.

    Article  CAS  Google Scholar 

  5. G. S. Nolas, J. Poon, and M. G. Kanatzidis,“Recent Developments in Bulk Thermoelectric Materials” MRS Bull. 31, pp199–205, 2006.

    Article  CAS  Google Scholar 

  6. H. Böttner, G. Chen, and R. Venkatasubramanian, “Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices, andApplications,” MRS Bull., 31, pp211–217, 2006.

    Article  Google Scholar 

  7. P. Reddy, S. Y. Jang, R. A. Segalman, A. Majumdar, “Thermoelectricity in molecular junctions” Science, 315(5818), pp1568–1571, 2007.

    Article  CAS  Google Scholar 

  8. J.J. Urban, D. V. Talapin, E.V. Shevchenko, C. R. Kagan, C. B. Murray, “Synergismin binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag-2 Te thin films,” Nat. Mater. 6(2), pp115–121, 2007.

    Article  CAS  Google Scholar 

  9. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, “Giant thermoelectric Seebeck coefficient of two-dimensional electron gas in SrTiO3” Nat. Mater., 6(2), pp129–134, 2007.

    Article  CAS  Google Scholar 

  10. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, “Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit” Science, 303(5659), pp818–821, 2004.

    Article  CAS  Google Scholar 

  11. H. Wang, J. F. Li, C. W. Nan, M. Zhou, W. S. Liu, B. P. Zhang, T. Kita,” High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering” Appl. Phys. Lett., 88(9), 092104, 2006.

    Article  Google Scholar 

  12. J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J Dangelo, A. Downey, T. Hogan, M. G. Kanatzidis, “Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1– ySn y) mSbTe2+mAdv. Mater., 18, pp1170–1173, 2006.

    Article  CAS  Google Scholar 

  13. P. F. P. Poudeu, J. D’Angelo, H.J. Kong, A. Downey, J.L. Short, R. Pcionek, T. P. Hogan, C. Uher, M. G. Kanatzidis, ”Nanostructures versus solid solutions: Low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials” J. Am. Chem. Soc., 128(44), 14347, 2006.

    Article  CAS  Google Scholar 

  14. A. M. Rao, X. Ji, and T. M. Tritt, “Properties of Nanostructured One-Dimensional and Composite Thermoelectric Materials,” MRS Bull., 31, pp218–223, 2006.

    Article  CAS  Google Scholar 

  15. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science, 320(5876), pp 634–638, 2008.

    Article  CAS  Google Scholar 

  16. A. L. Pilchak, F. Ren, E. D. Case, E. J. Timm, H. J. Schock, C.-I. Wu, and T. P. Hogan, “Characterization of dry milled powders of LAST (lead-animony-silver-tellurium) thermoelectric material,” Philosophical Magazine, 87(29), pp 4567–4591, 2007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CI., Steven, N.G., Sootsman, J. et al. Novel Lead Telluride Based Thermoelectric Materials. MRS Online Proceedings Library 1314, 1009 (2011). https://doi.org/10.1557/opl.2011.517

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.517

Navigation