Skip to main content
Log in

Degradable, Multifunctional Cardiovascular Implants: Challenges and Hurdles

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Polymer-coated and polymer-based cardiovascular implants are essential constituents of modern medicine and will proceed to gain importance with the demographic changes toward a society of increasing age-related morbidity. Based on the experiences with implants such as coronary or peripheral stents, which are presently widely used in clinical medicine, several properties of the next generation of cardiovascular implants have been envisioned that could be fulfilled by multifunctional polymers. The challenge is to combine tailored mechanical properties and rapid endothelialization with controlled drug release in order to modulate environmental cells and tissue. Additionally, degradability and sensitivity to external stimuli are useful in several applications. A critical function in terms of clinical complications is the hemocompatibility. The design of devices with improved hemocompatibility requires advanced in vitro test setups as discussed in depth in this article. Finally, degradable, multifunctional shape-memory polymers are introduced as a promising family of functional polymers that fulfill several requirements of modern implants and are of high relevance for cardiovascular application (e.g., stent technology). Such multifunctional polymers are a technology platform for future cardiovascular implants enabling induced autoregeneration in regenerative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Mason, P. Dunnill, Regen. Med. 2, 753 (2007).

    Google Scholar 

  2. C. Mason, P. Dunnill, Regen. Med. 3, 1 (2008).

    Google Scholar 

  3. M.P. Lutolf, P.M. Gilbert, H.M. Blau, Nature 462, 433 (2009).

    Google Scholar 

  4. T. Weigel, G. Schinkel, A. Lendlein, Expert Rev. Med. Devices 3, 835 (2006).

    Google Scholar 

  5. V.P. Shastri, A. Lendlein, Adv. Mater. 21, 3231 (2009).

    Google Scholar 

  6. D. Rickert, M.O. Scheithauer, S. Coskun, A. Lendlein, S. Kelch, R.P. Franke. Biomed. Tech. (Berl) 51, 116 (2006).

    Google Scholar 

  7. D. Rickert, M.O. Scheithauer, S. Coskun, S. Kelch, A. Lendlein, R.P. Franke. Clin. Hemorheol. Microcirc. 36, 301 (2007).

    Google Scholar 

  8. D. Rickert, A. Lendlein, A.M. Schmidt, S. Kelch, W. Roehlke, R. Fuhrmann, R.P. Franke, J. Biomed. Mater. Res. Part B, Appl. Biomater. 67, 722 (2003).

    Google Scholar 

  9. D. Rickert, A. Lendlein, S. Kelch, R. Fuhrmann, R.P. Franke, Biomed. Tech. (Berl) 47, 285 (2002).

    Google Scholar 

  10. D. Rickert, M.A. Moses, A. Lendlein, S. Kelch, R.P. Franke, Clin. Hemorheol. Microcirc. 28, 175 (2003).

    Google Scholar 

  11. D. Rickert, A. Lendlein, I. Peters, M.A. Moses, R.P. Franke, Eur. Arch. Otorhinolaryngol. 263, 215 (2006).

    Google Scholar 

  12. E. Binzen, D. Rickert, S. Kelch, R. Fuhrmann, Clin. Hemorheol. Microcirc. 28, 183 (2003).

    Google Scholar 

  13. E. Binzen, A. Lendlein, S. Kelch, D. Rickert, R.P. Franke, Clin. Hemorheol. Microcirc. 30, 283 (2004).

    Google Scholar 

  14. B. Hiebl, D. Rickert, R. Fuhrmann, F. Jung, A. Lendlein, R.P. Franke, Mater. Res. Soc. Symp. Proc. 1140, 143 (2009).

    Google Scholar 

  15. G.J. Peek, R.K. Firmin, ASAIO J. 45, 250 (1999).

    Google Scholar 

  16. E.W. Salzman, E.W. Merrill, K.C. Kent, in Hemostasis and Thrombosis: Basic Principles and Clinical Practice, R.W. Colman, J. Hirsh, V.J. Marder, E.W. Salzman, Eds. (Lippincott Company, Philadelphia, 1999).

    Google Scholar 

  17. S. Braune, M. Lange, K. Richau, K. Lützow, T. Weigel, F. Jung, A. Lendlein. Clin. Hemoreol. Microcirc. 2010, in press.

  18. D.J. Schneck, in Biomedical Engineering Fundamentals, J.D. Bronzino Ed. (Taylor & Francis, Boca Raton, FL, 2006) pp. 1-1–1-12.

    Google Scholar 

  19. L.P. Brewster, D. Bufallino, A. Ucuzian, H.P. Greisler, Biomaterials 28, 5028 (2007).

    Google Scholar 

  20. M. Joner, A.V. Finn, A. Farb, E.K. Mont, F.D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H.K. Gold, R. Virmani, J. Am. Coll. Cardiol. 48, 193 (2006).

    Google Scholar 

  21. F.J. Veith, R.J. Stoney, J. Vasc. Surg. 3, 104 (1986).

    Google Scholar 

  22. R. Langer, D.A. Tirrell, Nature 428, 487 (2004).

    Google Scholar 

  23. S. Kelch, N.Y. Choi, Z.G. Wang, A. Lendlein, Adv. Eng. Mater. 10, 494 (2008).

    Google Scholar 

  24. F. Jung, R. Bach, C. Mrowietz, U. Seyfert, R.P. Franke, Biomed. Tech. (Berl.) 46, 200 (2001).

    Google Scholar 

  25. H.R. Baumgartner, Schweiz. Med. Wochenschr. 106, 1367 (1976).

    Google Scholar 

  26. V.T. Turitto, R. Muggli, H.R. Baumgartner, Ann. N.Y. Acad. Sci. 283, 284 (1977).

    Google Scholar 

  27. J.G. White, G. Escolar, Platelets 11, 56 (2000).

    Google Scholar 

  28. O.K. Baskurt, M. Boynard, G.C. Cokelet, P. Connes, B.M. Cooke, S. Forconi, F. Liao, M.R. Hardeman, F. Jung, H.J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, J.L. Wautier, Clin. Hemorheol. Microcirc. 42, 75 (2009).

    Google Scholar 

  29. J.M. Sweeny, D.A. Gorog, V. Fuster, Nat. Rev. Cardiol. 6, 273 (2009).

    Google Scholar 

  30. U.T. Seyfert, F. Jung, Clin. Lab. 45, 623 (1999).

    Google Scholar 

  31. R. Latza, J. Koscielny, H. Radtke, A. Pruß, B. Baumann-Baretti, U. Bläsi, H. Kiesewetter, F. Jung., Infusionsther. Transfusionsmed. 27, 94 (2000).

    Google Scholar 

  32. K. Breddin, M. Ziemen, O. Bauer, W. Herrmann, L. Schaudinn, U. Schlosser, A. Winterhagen, H.J. Krzywanek, Thromb. Res. 19, 621 (1980).

    Google Scholar 

  33. J. Vienken, Med. Device Technol. 18, 12 (2007).

    Google Scholar 

  34. K. Breddin, H. Grun, H.J. Krzywanek, W.P. Schremmer, Thromb. Haemost. 35, 669 (1976).

    Google Scholar 

  35. R. Bach, F. Jung, I. Kohsiek, C. Ozbek, S. Spitzer, B. Scheller, J. Dyckmans, H. Schieffer, Thromb. Res. 74 (Suppl. 1), S55 (1994).

    Google Scholar 

  36. F. Jung, C. Mrowietz, U.T. Seyfert, R. Grewe, R.P. Franke, Clin. Hemorheol. Microcirc. 28, 189 (2003).

    Google Scholar 

  37. H. Schmid-Schönbein, H. Rieger, T. Fischer, Angiology 31, 301 (1980).

    Google Scholar 

  38. C. Mrowietz, R.P. Franke, U.T. Seyfert, J.W. Park, F. Jung, Clin. Hemorheol. Microcirc. 32, 89 (2005).

    Google Scholar 

  39. B. Hiebl, K. Lützow, M. Lange, F. Jung, B. Seifert, F. Klein, T. Weigel, K. Kratz, A. Lendlein, J. Biotechnol. 148, 76 (2010).

    Google Scholar 

  40. K. Gutensohn, C. Beythien, J. Bau, T. Fenner, P. Grewe, R. Koester, K. Padmanaban, P. Kuehnl, Thromb. Res. 99, 577 (2000).

    Google Scholar 

  41. V. Biehl, T. Wack, S. Winter, U.T. Seyfert, J. Breme, Biomol. Eng. 19, 97 (2002).

    Google Scholar 

  42. P.L. Blackshear, K.W. Bartelt, R.J. Forstrom, Ann. N.Y. Acad. Sci. 283, 270 (1977).

    Google Scholar 

  43. A.J. Reininger, Hämostaseologie 27, 247 (2007).

    Google Scholar 

  44. G.V. Born, P.D. Richardson, J. Membr. Biol. 57, 87 (1980).

    Google Scholar 

  45. E. Morgenstern, A. Ruf, H. Patscheke, Blood Coagul. Fibrinolysis 1, 543 (1990).

    Google Scholar 

  46. X. Du, M.H. Ginsberg, Thromb. Haemost. 78, 96 (1997).

    Google Scholar 

  47. C.A. Siedlecki, B.J. Lestini, K.K. Kottke-Marchant, S.J. Eppell, D.L. Wilson, R.E. Marchant, Blood 88, 2939 (1996).

    Google Scholar 

  48. R.E. Baier, R.C. Dutton, J. Biomed. Mater. Res. 3, 191 (1969).

    Google Scholar 

  49. S.M. Slack, J.L. Bohnert, T.A. Horbettm, Ann. N.Y. Acad. Sci. 516, 223 (1987).

    Google Scholar 

  50. M. Broberg, H. Nygren, J. Biomed. Mater. Res. A 66, 403 (2003).

    Google Scholar 

  51. K. Matschke, S.M. Tugtekin, U. Kappert, F. Jung, J.W. Park, M. Knaut, Herz 2, 201 (2004).

    Google Scholar 

  52. A. Lendlein, S. Kelch, Mat. Sci. Forum 492–493, 219 (2005).

    Google Scholar 

  53. M. Behl, M.Y. Razzaq, A. Lendlein, Adv. Mater., 2010, DOI: 10.1002/adma.200904447.

  54. C. Wischke, A. Lendlein, Pharm. Res. 27, 527 (2010).

    Google Scholar 

  55. J.J. Wykrzykowska, Y. Onuma, P.W. Serruys, Expert Opin. Drug Deliv. 6, 113 (2009).

    Google Scholar 

  56. M. Behl, A. Lendlein, Soft Matter 3, 58 (2007).

    Google Scholar 

  57. C.M. Yakacki, R. Shandas, C. Lanning, B. Rech, A. Eckstein, K. Gall, Biomaterials 28, 2255 (2007).

    Google Scholar 

  58. S.-H. Su, Recent Patents on Engineering 1, 244 (2007).

    Google Scholar 

  59. I. Bellin, S. Kelch, R. Langer, A. Lendlein, Proc. Natl. Acad. Sci. U.S.A. 103, 18043 (2006).

    Google Scholar 

  60. M. Behl, A. Lendlein, J. Mater. Chem. 20, 3335 (2010).

    Google Scholar 

  61. G.M. Baer, T.S. Wilson, W. Small, J. Hartman, W.J. Benett, D.L. Matthews, D.J. Maitland, J. Biomed. Mater. Res. Part B, Appl. Biomater. 90B, 421 (2009).

    Google Scholar 

  62. A. Lendlein, A.M. Schmidt, R. Langer, Proc. Natl. Acad. Sci. U.S.A. 98, 842 (2001).

    Google Scholar 

  63. S. Kelch, S. Steuer, A.M. Schmidt, A. Lendlein, Biomacromolecules 8, 1018 (2007).

    Google Scholar 

  64. A. Alteheld, Y. Feng, S. Kelch, A. Lendlein, Angew. Chem. Int. Ed. Engl. 44, 1188 (2005).

    Google Scholar 

  65. N.Y. Choi, A. Lendlein, Soft Matter 3, 901 (2007).

    Google Scholar 

  66. A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Expert Rev. Med. Dev. 7, 357 (2010).

    Google Scholar 

  67. A. Lendlein, R. Langer, Science 296, 1673 (2002).

    Google Scholar 

  68. A. Lendlein, A.M. Schmidt, M. Schroeter, R. Langer, J. Polym. Sci. A, Polym. Chem. 43, 1369 (2005).

    Google Scholar 

  69. A. Lendlein, J. Zotzmann, Y. Feng, A. Alteheld, S. Kelch, Biomacromolecules 10, 975 (2009).

    Google Scholar 

  70. J. Zotzmann, A. Alteheld, M. Behl, A. Lendlein, J. Mater. Sci. Mater. Med. 20, 1815 (2009).

    Google Scholar 

  71. Y.K. Feng, M. Behl, S. Kelch, A. Lendlein, Macromol. Biosci. 9, 45 (2009).

    Google Scholar 

  72. M. Behl, U. Ridder, Y. Feng, S. Kelch, A. Lendlein, Soft Matter 5, 676 (2009).

    Google Scholar 

  73. C. Wischke, A.T. Neffe, A. Lendlein, Adv. Polym. Sci. 226, 177 (2010).

    Google Scholar 

  74. C. Wischke, A.T. Neffe, S. Steuer, A. Lendlein, J. Control. Release 138, 243 (2009).

    Google Scholar 

  75. A.T. Neffe, B.D. Hanh, S. Steuer, A. Lendlein, Adv. Mater. 21, 3394 (2009).

    Google Scholar 

  76. K. Nagahama, Y. Ueda, T. Ouchi, Y. Ohya, Biomacromolecules 10, 1789 (2009).

    Google Scholar 

  77. M. van den Heuvel, O. Sorop, H.M. van Beusekom, W.J. van der Giessen, Minerva Cardioangiol. 57, 629 (2009).

    Google Scholar 

  78. Frost & Sullivan, N39F-54 Report (2008).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, F., Wischke, C. & Lendlein, A. Degradable, Multifunctional Cardiovascular Implants: Challenges and Hurdles. MRS Bulletin 35, 607–613 (2010). https://doi.org/10.1557/mrs2010.529

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.529

Navigation