Skip to main content
Log in

Nanomechanical Architectures—Mechanics-Driven Fabrication Based on Crystalline Membranes

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Bending of thin sheets or ribbons is a ubiquitous phenomenon that impacts our daily lives, from the household thermostat to sensors in airbags. At nanometer-scale thicknesses, the mechanics responsible for bending and other distortions in sheets can be employed to create a nanofabrication approach leading to novel nanostructures. The process and resulting structures have been aptly referred to as “nanomechanical architecture.” In this article, we review recent progress in atomistic simulations that not only have helped to reveal the physical mechanisms underlying this nanofabrication approach, but also have made predictions of new nanostructures that can be created. The simulations demonstrate the importance of the atomic structure of the crystalline membrane and of the intrinsic surface stress in governing membrane bending behavior at the nanoscale and making the behavior fundamentally distinct from that at the macroscale. Molecular dynamics simulations of the bending of patterned graphene (a single-atomic layer film) suggest a new method for synthesizing carbon nanotubes with unprecedented control over their size and chirality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.G. Schmidt, K. Eberl, Nature 410, 168 (2001).

    Google Scholar 

  2. F. Liu, P. Rugheimer, E. Mateeva, D.E. Savage, M.G. Lagally, Nature 416, 498 (2002).

    Google Scholar 

  3. A. Cho, Science 313, 165 (2006).

  4. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovsky, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova, Phys. E 6, 828 (2000).

  5. M. Huang, C. Boone, M. Roberts, D.E. Savage, M.G. Lagally, N. Shaji, H. Qin, R. Blick, J.A. Nairn, F. Liu, Adv. Mater. 17, 2860 (2005).

  6. L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, D. Grützmacher, Nano-technology 16, 655 (2005).

  7. V. Luchnikov, O. Sydorenko, M. Stamm, Adv. Mater. 17, 1177 (2005).

  8. R. Songmuang, A. Rastelli, S. Mendach, O.G. Schmidt, Appl. Phys. Lett. 90, 091905 (2007).

  9. I.S. Chun, X. Li, IEEE Trans. Nanotechnol. 7, 493 (2008).

  10. V. Y. Prinz, Microelectron. Eng. 69, 466 (2003).

  11. S. Timoshenko, J. Opt. Soc. Am. 11, 23 (1925).

  12. F. Liu, M. Huang, P. Rugheimer, D.E. Savage, M.G. Lagally, Phys. Rev. Lett. 89, 136101 (2002).

  13. M. Huang, P. Rugheimer, M.G. Lagally, F. Liu, Phys. Rev. B 72, 085450 (2005).

  14. O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, W. Hansen, Appl. Phys. Lett. 86, 143109 (2005).

  15. C. Deneke, C. Muller, N.Y. Jin-Phillipp, O.G. Schmidt, Semicond. Sci. Technol. 17, 1278 (2002).

  16. R. Songmuang, C. Deneke, O.G. Schmidt, Appl. Phys. Lett. 89, 223109 (2006).

  17. M. Grundmann, Appl. Phys. Lett. 83, 2444 (2003).

  18. J. Zang, F. Liu, Appl. Phys. Lett. 92, 021905 (2008).

  19. J. Zang, M. Huang, F. Liu, Phys. Rev. Lett. 98, 146102 (2007).

  20. J. Zang, F. Liu, Nanotechnology 18, 405501 (2007).

  21. G.G. Stoney, Proc. R. Soc. Lond. A 82, 172 (1909).

  22. F. Liu, M.G. Lagally, Phys. Rev. Lett. 76, 3156 (1996).

  23. O.G. Schmidt, N. Schmarje, C. Deneke, C. Muller, N.Y. Jin-Phillipp, Adv. Mater. 13, 756 (2001).

  24. D. Yu, F. Liu, Nano Lett. 7, 3046 (2007).

  25. F. Liu, D. Yu, Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic/molecular adsorption, U.S. Patent 60/908039 (April 2007).

  26. S.A. Scott, M.G. Lagally, J. Phys. D: Appl. Phys. 40, R75 (2007).

  27. X. Li, J. Phys. D: Appl. Phys. 41, 193001 (2008).

    Google Scholar 

  28. Y. Mei, G. Huang, A.A. Solovev, E.B. Urena, I. Mönch, F. Ding, T. Reindl, R.K.Y. Fu, P.K. Chu, O.G. Schmidt, Adv. Mater. 20, 1 (2008).

  29. V. Luchnikov, K. Kumar, M. Stamm, J. Micromech. Microeng. 18, 035041 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Lagally, M.G. & Zang, J. Nanomechanical Architectures—Mechanics-Driven Fabrication Based on Crystalline Membranes. MRS Bulletin 34, 190–195 (2009). https://doi.org/10.1557/mrs2009.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.51

Navigation