Skip to main content
Log in

Cracklike Processes within Frictional Motion: Is Slow Frictional Sliding Really a Slow Process?

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The dynamics of frictional motion have been studied for hundreds of years, yet many aspects of these important processes are not understood. First described by Coulomb and Amontons as the transition from static to dynamic friction, the onset of frictional motion is central to fields as diverse as physics, tribology, mechanics of earthquakes, and fracture. We review recent studies in which fast (real-time) visualization of the true contact area along a rough spatially extended interface separating two blocks of like material has revealed the detailed dynamics of how this transition takes place. The onset of motion is preceded by a discrete sequence of rapid cracklike precursors, which are initiated at shear levels that are well below the threshold for static friction. These precursors systematically increase in spatial extent with the applied shear force and leave in their wake a significant redistribution of the true contact area. Their cumulative effect is such that, just prior to overall sliding of the blocks, a highly inhomogeneous contact profile is established along the interface. At the transition to overall motion, these precursor cracks trigger both slow propagation modes and modes that travel faster than the shear wave speed. Overall frictional motion takes place only when either the slow propagation modes or additional shear cracks excited by these slow modes traverse the entire interface. Surprisingly, in the resulting stick–slip motion, the surface contact profile retains the profile built up prior to the first slipping event. These results suggest a fracture-based mechanism for stick–slip motion that is qualitatively different from other descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Carpick, D.F. Ogletree, M. Salmeron, J. Colloid Interface Sci. 211, 395 (1999).

    Google Scholar 

  2. J.H. Dieterich, Tectonophysics 211, 115 (1992).

    Google Scholar 

  3. N. Lapusta, J.R. Rice, J. Geophys. Res. [Solid Earth] 108, 2205 (2003).

    Google Scholar 

  4. Y. Ben-Zion, J. Mech. Phys. Solids 49, 2209 (2001).

    Google Scholar 

  5. M. Ohnaka, Earth Planets Space 56, 773 (2004).

    Google Scholar 

  6. C.H. Scholz, Nature 391, 37 (1998).

    Google Scholar 

  7. B.D. Thompson, R.P. Young, D.A. Lockner, Geophys. Res. Lett. 32, L10304 (2005).

    Google Scholar 

  8. B.Q. Luan, M.O. Robbins, Nature 435, 929 (2005).

    Google Scholar 

  9. E. Gerde, M. Marder, Nature 413, 285 (2001).

    Google Scholar 

  10. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, Nature 430, 525 (2004).

    Google Scholar 

  11. B.N.J. Persson, Sliding Friction Physical Principles and Applications (Springer-Verlag, New York, ed. 2, 2000).

    Google Scholar 

  12. J.R. Rice, A.L. Ruina, J. Appl. Mech. 50, 343 (1983).

    Google Scholar 

  13. A. Ruina, J. Geophys. Res. 88, 359 (1983).

    Google Scholar 

  14. J. Dieterich, J. Geophys. Res. 84, 2161 (1979).

    Google Scholar 

  15. C. Marone, Annu. Rev. Earth Planet. Sci. 26, 643 (1998).

    Google Scholar 

  16. B.D. Kilgore, M.L. Blanpied, J.H. Dieterich, Geophys. Res. Lett. 20, 903 (1993).

    Google Scholar 

  17. T. Baumberger, P. Berthoud, C. Caroli, Phys. Rev. B 60, 3928 (1999).

    Google Scholar 

  18. C. Caroli, T. Baumberger, L. Bureau, J. Phys. IV 12, 269 (2002).

    Google Scholar 

  19. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids (Oxford University Press, New York, ed. 2, 2001).

    Google Scholar 

  20. J.H. Dieterich, B.D. Kilgore, Pure Appl. Geophys. 143, 283 (1994).

    Google Scholar 

  21. A. Ovcharenko, G. Halperin, I. Etsion, Wear 264, 1043 (2008).

    Google Scholar 

  22. L. Bureau, T. Baumberger, C. Caroli, Eur. Phys. J. E 19, 163 (2006).

    Google Scholar 

  23. S. Rubinstein, G. Cohen, J. Fineberg, Phys. Rev. Lett. 96, 256103 (2006).

    Google Scholar 

  24. L.B. Freund, Dynamic Fracture Mechanics (Cambridge University Press, New York, 1990).

    Google Scholar 

  25. J. Fineberg, M. Marder, Phys. Rep. 313, 2 (1999).

    Google Scholar 

  26. A.J. Rosakis, O. Samudrala, R.P. Singh, A. Shukla, J. Mech. Phys. Solids 46, 1789 (1998).

    Google Scholar 

  27. A.J. Rosakis, O. Samudrala, D. Coker, Science 284, 1337 (1999).

    Google Scholar 

  28. H.J. Gao, Y.G. Huang, F.F. Abraham, J. Mech. Phys. Solids 49, 2113 (2001).

    Google Scholar 

  29. A. Needleman, J. Appl. Mech.: Trans. ASME 66, 847 (1999).

    Google Scholar 

  30. S.M. Rubinstein, G. Cohen, J. Fineberg, Nature 430, 1005 (2004).

    Google Scholar 

  31. S.M. Rubinstein, M. Shay, G. Cohen, J. Fineberg, Int. J. Fract. 140, 201 (2006).

    Google Scholar 

  32. S.M. Rubinstein, G. Cohen, J. Fineberg, Phys. Rev. Lett. 98, 226103 (2007).

    Google Scholar 

  33. L.B. Freund, J. Geophys. Res. 84, 2199 (1979).

    Google Scholar 

  34. A.J. Rosakis, O. Samudrala, D. Coker, Mater. Res. Innov. 3, 236 (2000).

    Google Scholar 

  35. K.W. Xia, A.J. Rosakis, H. Kanamori, Science 303, 1859 (2004).

    Google Scholar 

  36. Z. Reches, D.A. Lockner, J. Geophys. Res. [Solid Earth] 99, 18159 (1994).

    Google Scholar 

  37. M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998).

    Google Scholar 

  38. J. Rottler, M.O. Robbins, Phys. Rev. Lett. 95 (2005).

  39. N. Lapusta, J.R. Rice, Y. Ben-Zion, G.T. Zheng, J. Geophys. Res. [Solid Earth] 105, 23765 (2000).

    Google Scholar 

  40. M. Ohnaka, Pure Appl. Geophys. 161, 1915 (2004).

    Google Scholar 

  41. H. Kanamori, G.S. Stewart, J. Geophys. Res. 83, 3427 (1978).

    Google Scholar 

  42. S. Das, Pure Appl. Geophys. 160, 579 (2003).

    Google Scholar 

  43. M. Ohnaka, L.F. Shen, J. Geophys. Res. [Solid Earth] 104, 817 (1999).

    Google Scholar 

  44. S.L. Ma, C.R. He, Tectonophysics 337, 135 (2001).

    Google Scholar 

  45. W.F. Brace, J.D. Byerlee, Science 153, 990 (1966).

    Google Scholar 

  46. M. Bouchon, M.P. Bouin, H. Karabulut, M.N. Toksöz, M. Dietrich, A. Rosakis, Geophys. Res. Lett. 28, 2723 (2001).

    Google Scholar 

  47. B.T. Aagaard, T.H. Heaton, Bull. Seismol. Soc. Am. 94, 2064 (2004).

    Google Scholar 

  48. E.M. Dunham, J. Geophys. Res. [Solid Earth] 112 (2007).

  49. Y. Liu, N. Lapusta, J. Mech. Phys. Solids 56, 25 (2008).

    Google Scholar 

  50. G.C. Beroza, T.H. Jordan, J. Geophys. Res. [Solid Earth Planets] 95, 2485 (1990).

    Google Scholar 

  51. R.E. Abercrombie, G. Ekstrom, J. Geophys. Res. [Solid Earth] 108 (2003).

  52. M.R. Brudzinski, R.M. Allen, Geology 35, 907 (2007).

    Google Scholar 

  53. W.L. Ellsworth, G.C. Beroza, Geophys. Res. Lett. 25, 401 (1998).

    Google Scholar 

  54. P.F. Ihmle, T.H. Jordan, Science 266, 1547 (1994).

    Google Scholar 

  55. H. Kanamori, Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 80, 297 (2004).

    Google Scholar 

  56. T.I. Melbourne, F.H. Webb, Science 300, 1886 (2003).

    Google Scholar 

  57. M.M. Miller, T. Melbourne, D.J. Johnson, W.Q. Sumner, Science 295, 2423 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinstein, S.M., Cohen, G. & Fineberg, J. Cracklike Processes within Frictional Motion: Is Slow Frictional Sliding Really a Slow Process?. MRS Bulletin 33, 1181–1189 (2008). https://doi.org/10.1557/mrs2008.249

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.249

Navigation