Skip to main content
Log in

The Mechanics and Physics of Defect Nucleation

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The following ar ticle is based on the Outstanding Young Investigator Award presentation given by Ju Li on April 19, 2006, at the Materials Research Society Spring Meeting in San Francisco. Li received the award “for his innovative work on the atomistic and first-principles modeling of nanoindentation and ideal strength in revealing the genesis of materials deformation and fracture.”

Defect nucleation plays a critical role in the mechanical behavior of materials, especially if the system size is reduced to the submicron scale. At the most fundamental level, defect nucleation is controlled by bond breaking and reformation events, driven typically by mechanical strain and electronegativity differences. For these processes, atomistic and first-principles calculations are uniquely suited to provide an unprecedented level of mechanistic detail. Several connecting threads incorporating notions in continuum mechanics and explicit knowledge of the interatomic energy landscape can be identified, such as homogeneous versus heterogeneous nucleation, cleavage versus shear-faulting tendencies, chemomechanical coupling, and the fact that defects are singularities at the continuum level but regularized at the atomic scale. Examples are chosen from nano-indentation, crack-tip processes, and grain-boundary processes. In addition to the capacity of simulations to identify candidate mechanisms, the computed athermal strength, activation energy, and activation volume can be compared quantitatively with experiments to define the fundamental properties of defects in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305 (2004) p. 986.

    Google Scholar 

  2. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53 (2005) p. 1821.

    Google Scholar 

  3. C.A. Volkert and E.T. Lilleodden, Philos. Mag. 86 (2006) p. 5567.

    Google Scholar 

  4. W. Kohn, A.D. Becke, and R.G. Parr, J. Phys. Chem. 100 (1996) p. 12974.

    Google Scholar 

  5. S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, and S. Yip, Phys. Rev. B 70 104104 (2004).

    Google Scholar 

  6. S.V. Dmitriev, T. Kitamura, J. Li, Y. Umeno, K. Yashiro, and N. Yoshikawa, Acta Mater. 53 (2005) p. 1215.

    Google Scholar 

  7. Y. Umeno, A. Kushima, T. Kitamura, P. Gumbsch, and J. Li, Phys. Rev. B 72 165431 (2005).

    Google Scholar 

  8. S. Ogata, J. Li, and S. Yip, Science 298 (2002) p. 807.

    Google Scholar 

  9. M.S. Daw and M.I. Baskes, Phys. Rev. B 29 (1984) p. 6443.

    Google Scholar 

  10. J. Biener, A.M. Hodge, A.V. Hamza, L.M. Hsiung, and J.H. Satcher, J. Appl. Phys. 97 024301 (2005).

    Google Scholar 

  11. C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmuller, Appl. Phys. Lett. 89 061920 (2006).

    Google Scholar 

  12. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7 (1992) p. 1564.

    Google Scholar 

  13. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt, Acta Metall. Mater. 43 (1995) p. 1569.

    Google Scholar 

  14. A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Acta Mater. 48 (2000) p. 2277.

    Google Scholar 

  15. A.M. Minor, S.A.S. Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren, Nature Mater. 5 (2006) p. 697.

    Google Scholar 

  16. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.-L. Shen, Acta Mater. (2007) overview no. 142.

  17. A. Gouldstone, K.J. Van Vliet, and S. Suresh, Nature 411 (2001) p. 656.

    Google Scholar 

  18. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek, Acta Mater. 44 (1996) p. 3585.

    Google Scholar 

  19. H.D. Espinosa, S. Berbenni, M. Panico, and K.W. Schwarz, Proc. Natl. Acad. Sci. USA 102 (2005) p. 16933.

    Google Scholar 

  20. J.R. Greer and W.D. Nix, Phys. Rev. B 73 245410 (2006).

    Google Scholar 

  21. K. Sieradzki, A. Rinaldi, C. Friesen, and P. Peraltai, Acta Mater. 54 (2006) p. 4533.

    Google Scholar 

  22. S. Yip, Nature 391 (1998) p. 532.

    Google Scholar 

  23. J.K. Mason, A.C. Lund, and C.A. Schuh, Phys. Rev. B 73 054102 (2006).

    Google Scholar 

  24. J. Pokluda, M. Cerny, P. Sandera, and M. Sob, J. Comput. Aided Mater. Des. 11 (2004) p. 1.

    Google Scholar 

  25. W. Wang and K. Lu, Philos. Mag. 86 (2006) p. 5309.

    Google Scholar 

  26. P.C. Wo, L. Zuo, and A.H.W. Ngan, J. Mater. Res. 20 (2005) p. 489.

    Google Scholar 

  27. A. Asenjo, M. Jaafar, E. Carrasco, and J.M. Rojo, Phys. Rev. B 73 075431 (2006).

    Google Scholar 

  28. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner, Phys. Rev. B 67 172101 (2003).

    Google Scholar 

  29. C.A. Schuh and A.C. Lund, J. Mater. Res. 19 (2004) p. 2152.

    Google Scholar 

  30. H. Bei, E.P. George, J.L. Hay, and G.M. Pharr, Phys. Rev. Lett. 95 045501 (2005).

    Google Scholar 

  31. H.S. Leipner, D. Lorenz, A. Zeckzer, and P. Grau, Phys. Status Solidi A 183 (2001) p. R4.

    Google Scholar 

  32. U.F. Kocks, A.S. Argon, and M.F. Ashby, Prog. Mater. Sci. 19 (1975) p. 1.

    Google Scholar 

  33. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51 (2003) p. 5743.

    Google Scholar 

  34. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, Science 304 (2004) p. 422.

    Google Scholar 

  35. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh, Acta Mater. 53 (2005) p. 2169.

    Google Scholar 

  36. R.J. Asaro and S. Suresh, Acta Mater. 53 (2005) p. 3369.

    Google Scholar 

  37. T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh, Proc. Natl. Acad. Sci. USA (2007) in press, www.pnas.org/cgi/doi/10.1073/pnas.0611097104.

  38. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, Nature 419 (2002) p. 912.

    Google Scholar 

  39. Y.T.T. Zhu and X.Z. Liao, Nature Mater. 3 (2004) p. 351.

    Google Scholar 

  40. W.L. Johnson, MRS Bulletin 24 (10) (1999) p. 42.

    Google Scholar 

  41. F. Shimizu, S. Ogata, and J. Li, Acta Mater. 54 (2006) p. 4293.

    Google Scholar 

  42. E.M. Bringa, A. Caro, Y.M. Wang, M. Victoria, J.M. McNaney, B.A. Remington, R.F. Smith, B.R. Torralva, and H. Van Swygenhoven, Science 309 (2005) p. 1838.

    Google Scholar 

  43. S.E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. McIntyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, IEEE Electron Dev. Lett. 25 (2004) p. 191.

    Google Scholar 

  44. P.R. Chidambaram, C. Bowen, S. Chakravarthi, C. Machala, and R. Wise, IEEE Trans. Electron Dev. 53 (2006) p. 944.

    Google Scholar 

  45. Z. Zhang, J. Yoon, and Z.G. Suo, Appl. Phys. Lett. 89 261912 (2006).

    Google Scholar 

  46. T. Dumitrica, M. Hua, and B.I. Yakobson, Proc. Natl. Acad. Sci. USA 103 (2006) p. 6105.

    Google Scholar 

  47. S.L. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, and T. Belytschko, Phys. Rev. B 71 115403 (2005).

    Google Scholar 

  48. J.Y. Huang, S. Chen, Z.F. Ren, Z.Q. Wang, D.Z. Wang, M. Vaziri, Z. Suo, G. Chen, and M.S. Dresselhaus, Phys. Rev. Lett. 97 075501 (2006).

    Google Scholar 

  49. H. Mori, S. Ogata, J. Li, S. Akita, and Y. Nakayama, Phys. Rev. B 74 165418 (2006).

    Google Scholar 

  50. J.R. Rice and R. Thomson, Philos. Mag. 29 (1974) p. 73.

    Google Scholar 

  51. J.R. Rice and G.E. Beltz, J. Mech. Phys. Solids 42 (1994) p. 333.

    Google Scholar 

  52. G. Xu, A.S. Argon, and M. Oritz, Philos. Mag. A 75 (1997) p. 341.

    Google Scholar 

  53. A.S. Argon, J. Eng. Mater. Technol. - Trans. ASME 123 (2001) p. 1.

    Google Scholar 

  54. T. Zhu, J. Li, and S. Yip, Phys. Rev. Lett. 93 025503 (2004).

    Google Scholar 

  55. T. Vegge, T. Rasmussen, T. Leffers, O.B. Pedersen, and K.W. Jacobsen, Phys. Rev. Lett. 85 (2000) p. 3866.

    Google Scholar 

  56. V.V. Bulatov, S. Yip, and A.S. Argon, Philos. Mag. A 72 (1995) p. 453.

    Google Scholar 

  57. W. Cai, V.V. Bulatov, J.F. Justo, A.S. Argon, and S. Yip, Phys. Rev. Lett. 84 (2000) p. 3346.

    Google Scholar 

  58. M. Wen and A.H.W. Ngan, Acta Mater. 48 (2000) p. 4255.

    Google Scholar 

  59. B.R. Lawn, D.H. Roach, and R.M. Thomson, J. Mater. Sci. 22 (1987) p. 4036.

    Google Scholar 

  60. T. Zhu, J. Li, and S. Yip, Phys. Rev. Lett. 93 205504 (2004).

    Google Scholar 

  61. J.W. Cahn and F.R.N. Nabarro, Philos. Mag. A 81 (2001) p. 1409.

    Google Scholar 

  62. A.H. Cottrell, Philos. Mag. Lett. 82 (2002) p. 65.

    Google Scholar 

  63. J.R. Rice, J. Mech. Phys. Solids 40 (1992) p. 239.

    Google Scholar 

  64. J. Li, A.H.W. Ngan, and P. Gumbsch, Acta Mater. 51 (2003) p. 5711.

    Google Scholar 

  65. G. Henkelman and H. Jonsson, J. Chem. Phys. 113 (2000) p. 9978.

    Google Scholar 

  66. T. Zhu, J. Li, X. Lin, and S. Yip, J. Mech. Phys. Solids 53 (2005) p. 1597.

    Google Scholar 

  67. E.B. Tadmor and S. Hai, J. Mech. Phys. Solids 51 (2003) p. 765.

    Google Scholar 

  68. V. Vitek, Scripta Metall. 4 (1970) p. 725.

    Google Scholar 

  69. A. van de Walle, M. Asta, and G. Ceder, Calphad 26 (2002) p. 539.

    Google Scholar 

  70. J. Li and S. Yip, CMES-Comp. Model. Eng. Sci. 3 (2002) p. 219.

    Google Scholar 

  71. T. Kitamura, Y. Umeno, and R. Fushino, Mater. Sci. Eng. A 379 (2004) p. 229.

    Google Scholar 

  72. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh, Nature 418 (2002) p. 307.

    Google Scholar 

  73. N. Binggeli, N.R. Keskar, and J.R. Chelikowsky, Phys. Rev. B 49 (1994) p. 3075.

    Google Scholar 

  74. J.W. Cahn, Acta Metall. 9 (1961) p. 795.

    Google Scholar 

  75. D.M. Clatterbuck, C.R. Krenn, M.L. Cohen, and J.W. Morris, Phys. Rev. Lett. 91 135501 (2003).

    Google Scholar 

  76. S. Ogata, J. Li, and S. Yip, Phys. Rev. B 71 224102 (2005).

    Google Scholar 

  77. A.G. Khachaturyan, Theory of Structural Transformation in Solids (Wiley, New York, 1983).

    Google Scholar 

  78. R. Peierls, Proc. Phys. Soc. London 52 (1940) p. 34.

    Google Scholar 

  79. V. V. Bulatov and E. Kaxiras, Phys. Rev. Lett. 78 (1997) p. 4221.

    Google Scholar 

  80. W. Cai, V.V. Bulatov, J.P. Chang, J. Li, and S. Yip, Phys. Rev. Lett. 86 (2001) p. 5727.

    Google Scholar 

  81. J. Li, C.Z. Wang, J.P. Chang, W. Cai, V. V. Bulatov, K.M. Ho, and S. Yip, Phys. Rev. B 70 104113 (2004).

    Google Scholar 

  82. T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip, and S. Suresh, J. Mech. Phys. Solids 52 (2004) p. 691.

    Google Scholar 

  83. R.L. Hayes, M. Fago, M. Ortiz, and E.A. Carter, Multiscale Model. Simul. 4 (2005) p. 359.

    Google Scholar 

  84. K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Phys. Rev. B 67 104105 (2003).

    Google Scholar 

  85. P. Schall, I. Cohen, D.A. Weitz, and F. Spaepen, Nature 440 (2006) p. 319.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J. The Mechanics and Physics of Defect Nucleation. MRS Bulletin 32, 151–159 (2007). https://doi.org/10.1557/mrs2007.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.48

Navigation