Skip to main content
Log in

Pb-Free Solder: New Materials Considerations for Microelectronics Processing

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A single printed circuit board includes thousands, sometimes even hundreds of thousands, of solder joints. The failure of even a single solder joint is usually enough to compromise the functionality of an electronic device or system. PbSn solder had been the standard ma te rial for these joints until various regulations around the world began to limit Pb use. SnAgCu and related alloys are quickly replacing PbSn, but much still needs to be understood and controlled. None of the paradigms for understanding the mechanical response of PbSn alloys is applicable to lead-free alloys. Much of the surprising behavior of SnAgCu solder arises from the complex and fascinating nature of its solidification behavior. In this ar ticle, the impact of solidification on the microstruc ture and therefore the mechanical properties of these solder joints will be addressed in the context of microelectronics proc essing. The need for better simulations of SnAgCu solder behavior will also be examined. Notably, modelers will have to account for a variety of new parameter dependencies not previously considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Puttlitz, K.A. Stalter, Eds. Handbook of Lead - Free Solder Technology for Microelectronic Assemblies (Marcel Dekker, New York, 2004), and related Internet links: IPC Compliance Web Site, http://leadfree.ipc.org/RoHS_3–2-1–4.asp; EC Environment Policy, Waste Electrical and Electronic Equipment, http://ec.europa.eu/environment/waste/weee_index.htm; U.K. Department of Trade and Industry Web Site, EC Directive on Waste Electrical and Electronic Equipment, http://www.dti.gov.uk/innovation/sustainability/weee/page30269.html; Grace Compliance Specialist Web Site, http://www.graspllc.com/China%20RoHS.php/.

  2. K.W. Moon et al., J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  3. J.-P. Clech, MicroMater. Nanomater. 3, 144 (2004).

    Google Scholar 

  4. R. Darveaux, K. Banerji, A. Mawer, G. Dody, in Ball Grid Array Technology, J.H. Lau, ed. (McGraw-Hill, New York, 1995) pp. 379–442.

    Google Scholar 

  5. L.P. Lehman et al., J. Electron. Mater. 33 (12), 1429 (2004).

    Article  CAS  Google Scholar 

  6. A.U. Telang, T.R. Bieler, JOM 57, 44 (2005).

    Article  CAS  Google Scholar 

  7. A.U. Telang, T.R. Bieler, S. Choi, K.N. Subramanian, J. Mater. Res. 17, 2204 (2002).

    Article  Google Scholar 

  8. D.R. Frear, J. Met. 48, 49 (1996).

    CAS  Google Scholar 

  9. D.G. House, E.V. Vernon, Br. J. Appl. Phys. 11, 254 (1960).

    Article  CAS  Google Scholar 

  10. J.A. Rayne, B.S. Chandrasekhar, Phys. Rev. 120, 1658 (1960).

    Article  CAS  Google Scholar 

  11. K.N. Subramanian, J.G. Lee, J. Mater. Sci.–Mater. Electron. 15, 235 (2004).

    Article  CAS  Google Scholar 

  12. S.B. Park, R. Dhakal, L.P. Lehman, E.J. Cotts, in Proc. ASME InterPACK (San Francisco, CA, 2005).

  13. D.R. Frear, J.W. Jang, J.K. Lin, C. Zhang, J. Met. 53, 28 (2001).

    CAS  Google Scholar 

  14. D.W. Henderson et al., J. Mater. Res. 19 (6), 1608 (2004).

    Article  CAS  Google Scholar 

  15. Special Issue on Lead - Free Solders and Processing Issues in Microelectronics Packaging, J. Electron. Mater. 32, 1359 (2003).

  16. K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  17. A. Zribi et al., J. Electron. Mater. 30, 1157 (2001).

    Article  CAS  Google Scholar 

  18. M.A. Matin, E.W.C. Coenen, W.P. Vellinga, M.G.D. Geers, Scripta Mater. 53, 927 (2005).

    Article  CAS  Google Scholar 

  19. T.R. Bieler et al., Proc. 56th Electronic Components Technology Conf. (2006) p. 6.

  20. L.P. Lehman et al., Proc. 55th Electronic Components Technology Conf. (2005) p. 674–681.

  21. W.C. Luoa et al., Mater. Sci. Eng. A 396, 385 (2005).

    Article  Google Scholar 

  22. K. Kim, K. Suganuma, J. Kim, C. Hwang, J. Met. 56, 39 (2004).

    CAS  Google Scholar 

  23. A.U. Telang et al., J. Electron. Mater. 33 (12), 1412 (2004).

    Article  CAS  Google Scholar 

  24. F. Ochoa, X. Deng, N. Chawla, J. Electron. Mater. 33 (12), 1596 (2004).

    Article  CAS  Google Scholar 

  25. K.P. Wu, N. Wade, S. Yamada, K. Miyahara, Z. Metallkd. 95 (3), 185 (2004).

    Article  CAS  Google Scholar 

  26. Q. Xiao, L. Nguyen, W.D Armstrong, Proc. 54th Electronic Components Technology Conf. (2004) p. 1325–1332.

  27. R.L.J.M. Ubachs, P.J.G. Schreurs, M.G.D. Geers, IEEE Trans. Components Packaging Technologies 27 (4), 635 (2004).

    Article  CAS  Google Scholar 

  28. S. Jadhav, T.R. Bieler, K.N. Subramanian, J.P. Lucas, J. Electron. Mater. 30, 1197 (2001).

    Article  CAS  Google Scholar 

  29. S. Choi et al., J. Met. 53, 22 (2001).

    CAS  Google Scholar 

  30. A.U. Telang, T.R. Bieler, M.A. Crimp, Mater. Sci. Eng. A 421 (1–2), 22 (2006).

    Article  Google Scholar 

  31. J. Weertman, Trans. Am. Inst. Min. Eng. 218, 207 (1960).

    CAS  Google Scholar 

  32. M.D. Mathew, Y. Hang, S. Movva, K.L. Murty, Metall. Mater. Trans. 01.36A (1), 99 (2005).

    Article  Google Scholar 

  33. R. Kinyanjui, L.P. Lehman, L. Zavalij, E. Cotts, J. Mater. Res. 20, 2914 (2005).

    Article  CAS  Google Scholar 

  34. K.S. Kim, S.H. Huh, K. Suganuma, J. Alloys Compd. 352, 226 (2002).

    Article  Google Scholar 

  35. F. Ochoa, X. Deng, N. Chawla, J. Electron. Mater. 33 (12), 1596 (2004).

    Article  CAS  Google Scholar 

  36. K.P. Wu, N. Wade, S. Yamada, K. Miyahara, Z. Metallkd. 95 (3), 185 (2004).

    Article  CAS  Google Scholar 

  37. I. Dutta, D. Pan, R.A. Marks, S.G. Jadhav, Mater. Sci. Eng. A 410–11, 48 (2005).

    Article  Google Scholar 

  38. S.K. Kang et al., in Proc. 54th Electronic Components Technology Conf. (2004) p. 661–667.

  39. J.G. Lee, K.N. Subramanian, Soldering Surf. Mount Technol. 17 (1), 33 (2005).

    Article  CAS  Google Scholar 

  40. S.K. Kang et al., J. Electron. Mater. 35 479 (2006).

    Article  CAS  Google Scholar 

  41. I.E. Anderson, J.L. Harringa, J. Electron. Mater. 33, 1485 (2004).

    Article  CAS  Google Scholar 

  42. J.C. Gong, C.Q. Liu, P.P. Conway, V.V. Silberschmidt, Mater. Sci. Eng. A 427 (1–2), 60 (2006).

    Article  Google Scholar 

  43. R. Darveaux, K. Banerji, IEEE Trans. Components, Hybrids, Manuf. Technol., 15 (6), 1013 (December 1992).

    Article  CAS  Google Scholar 

  44. Y. Wei et al., J. Electron. Packaging 126 367 (2004).

    Article  CAS  Google Scholar 

  45. J. Gong, C. Liu, P.P. Conway, V.V. Silberschmidt, Comput. Mater. Sci. (2007) in press, http://www.sciencedirect.com.

  46. H. Rhee, K.N. Subramanian, Soldering Surf. Mount Technol., 18 (1), 19 (2006).

    Article  CAS  Google Scholar 

  47. C. Kanchanomai, Y. Miyashita, Y. Mutoh, S.L. Mannan, Mater. Sci. Eng. A 345 90 (2003).

    Article  Google Scholar 

  48. S. Terashima, K. Takahama, M. Nozaki, M. Tanaka, Mater. Trans. JIM 45 (4), 1383 (2004).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgesen, P., Bieler, T., Lehman, L.P. et al. Pb-Free Solder: New Materials Considerations for Microelectronics Processing. MRS Bulletin 32, 360–365 (2007). https://doi.org/10.1557/mrs2007.236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.236

Navigation