Skip to main content
Log in

Materials Aspects in Micro- and Nanofluidic Systems Applied to Biology

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

One of the key problems in microfabrication and especially nanofabrication applied to biology is materials selection. Proper materials must have mechanical stability and the ability to hermetically bond to other surfaces, yet not bind biological molecules. They must also be wettable by water and have good optical properties. In this article, we review some of the attempts to find materials for micro- and nanofluidic systems in biological applications that satisfy these rather conflicting constraints.We discuss the materials properties that make poly (dimethylsiloxane) or non-elastomeric materials more or less suitable for particular applications in biology. We also explore the effects and the importance of surface treatments for integrating biological objects into microfabricated and nanofabricated fluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S.Y.F.W. Hawkes, M.J.V. Chapela, and M. Montembault, Combinatorial Sci. 24 (2005) p. 712.

    Google Scholar 

  2. A.P. Doig, Genetic Eng. News 25 (2005) p. 26.

    Google Scholar 

  3. L. Pollack, M. Tate, N. Darnton, J.B. Knight, S.M. Gruner, W.A. Eaton, and R.H. Austin, Proc. Natl. Acad. Sci. USA 96 (1999) p. 10115.

    Google Scholar 

  4. E. Kauffmann, N.C. Darnton, R.H. Austin, C. Batt, and K. Gerwert, Proc. Natl. Acad. Sci. USA 98 (12) (2001) p. 6646.

    Google Scholar 

  5. E.A. Lipman, B. Schuler, O. Bakajin, and W.A. Eaton, Science 301 (2003) p. 1233.

    Google Scholar 

  6. Y.M. Wang, J.O. Tegenfeldt, W. Reisner, R. Riehn, X.-J. Guan, L. Guo, I. Golding, E.C. Cox, J.C. Sturm, and R.H. Austin, Proc. Natl. Acad. Sci. USA 102 (2005) p. 9796.

    Google Scholar 

  7. R. Riehn, M. Lu, Y.M. Wang, S.F. Lim, E.C. Cox, and R.H. Austin, Proc. Natl. Acad. Sci. USA 102 (2005) p. 10012.

    Google Scholar 

  8. J. P. Brody, P. Yager, R.E. Goldstein, and R.H. Austin, Biophys. J. 71 (1996) p. 3430.

    Google Scholar 

  9. J.P. Brody, Y. Han, R.H. Austin, and M. Bitensky, Biophys. J. 68 (1995) p. 2224.

    Google Scholar 

  10. R.H. Carlson, J.P. Brody, S. Chan, C. Gabel, J. Winkleman, and R.H. Austin, Phys. Rev. Lett. 79 (1997) p. 2149.

    Google Scholar 

  11. G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, Annu. Rev. Biomed. Eng. 3 (2001) p. 335.

    Google Scholar 

  12. S.R. Quake and A. Scherer, Science 290 (2000) p. 1536.

    Google Scholar 

  13. M. Doi and S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, U.K., 2001).

    Google Scholar 

  14. J.M Gere and S.P. Timoshenko, Mechanics of Materials (PWS-Kent Publishing, New York, 1984).

    Google Scholar 

  15. O. du Roure, A. Saez, A. Buguin, R.H. Austin, P. Chavrier, P. Siberzan, and B. Ladoux, Proc. Natl. Acad. Sci. USA 102 (2005) p. 2390.

    Google Scholar 

  16. J.A. Venables, Introduction to Surface and Thin Film Processes (Cambridge University Press, Cambridge, U.K., 2000).

    Google Scholar 

  17. A.E. Mattsson and W. Kohn, J. Chem. Phys. 115 (2001) p. 3441.

    Google Scholar 

  18. C.H. Mastrangelo and C.H. Hsu, Proc. IEEE Solid-State Sensors and Actuators Workshop (Hilton Head, S.C., 1992) p. 208.

  19. D. Armani and C. Liu, 12th Int. Conf. on MEMS (MEMS ‘99) p. 222.

  20. R. Russell, I.S. Millettt, M.W. Tate, L.W. Kwok, B. Nakatani, S.M. Gruner, S.G.J. Mochrie, V. Pande, S. Doniach, D. Herschlag, and L. Pollack, Proc. Natl. Acad. Sci. USA 99 (2002) p. 4266.

    Google Scholar 

  21. D.E. Hertzog, X. Michalet, M. Jager, X.X. Kong, J.G. Santiago, S. Weiss, and O. Bakajin, Anal. Chem. 76 (24) (2004) p. 7169.

    Google Scholar 

  22. W. Reisner, K.J. Morton, R. Riehn, Y.M. Wang, Z. Yu, M. Rosen, J.C. Sturm, S.Y. Chou, E. Frey, and R.H. Austin, Phys. Rev. Lett. 94 196101 (2005).

    Google Scholar 

  23. O. Bilsel, C. Kayatekin, L.A. Wallace, and C.R. Matthews, Rev. Sci. Instrum. 76 (1) 014302 (2005).

    Google Scholar 

  24. L.R. Huang, E.C. Cox, R.H. Austin, and J.C. Sturm, Science 304 (2004) p. 987.

    Google Scholar 

  25. R.J. Jackman, T.M. Floyd, R. Ghodssi, M.A. Schmidt, and K.F. Jensen, J. Micromech. Microeng. 11 (3) (2001) p. 263.

    Google Scholar 

  26. P.-G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, Heidelberg, 2004).

    Google Scholar 

  27. S. Bhattacharya, A. Datta, J.M. Berg, and S. Gangopadhyay, J. Microelectromech. Sys. 14 (3) (2005) p. 590.

    Google Scholar 

  28. Q.Y. Tong and U. Goesele, Semiconductor Wafer Bonding (Wiley, New York, 1999) p. 55.

    Google Scholar 

  29. S. Bouaidat, O. Hansen, H. Bruus, C. Berendsen, N.K. Bau-Madsen, P. Thomsen, A. Wolff, and J. Jonsmann, Lab Chip 5 (8) (2005) p. 827.

    Google Scholar 

  30. C.M. Chan, T.M. Ko, and H. Hiraoka, Surf. Sci. Rep. 24 (1996) p. 1.

    Google Scholar 

  31. C.M. Chan, Polymer Surface Modification and Characterization (Hansa, Munich, 1994).

    Google Scholar 

  32. J.H. Lee, J.W. Park, and H.B. Lee, Biomaterials 12 (1991) p. 443.

    Google Scholar 

  33. J.C. McDonald and G.M. Whitesides, Acc. Chem. Res. 35 (2002) p. 491.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakajin, O., Fountain, E., Morton, K. et al. Materials Aspects in Micro- and Nanofluidic Systems Applied to Biology. MRS Bulletin 31, 108–113 (2006). https://doi.org/10.1557/mrs2006.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.24

Keywords

Navigation