Skip to main content
Log in

Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

As the size scale of device features becomes ever smaller, conventional lithographic processes become increasingly more difficult and expensive, especially at a minimum feature size of less than 45 nm. Consequently, to achieve higher-density circuits, storage devices, or displays, it is evident that alternative routes need to be developed to circumvent both cost and manufacturing issues.

An ideal process would be compatible with existing technological processes and manufacturing techniques; these strategies, together with novel materials, could allow significant advances to be made in meeting both short-term and long-term demands for higher-density, faster devices. The self-assembly of block copolymers (BCPs), two polymer chains covalently linked together at one end, provides a robust solution to these challenges. As thin films, immiscible BCPs self-assemble into a range of highly ordered morphologies where the size scale of the features is only limited by the size of the polymer chains and are, therefore, nanoscopic.

While self-assembly alone is sufficient for a number of applications in fabricating advanced microelectronics, directed, self-orienting, self-assembly processes are also required to produce complex devices with the required density and addressability of elements to meet future demands. Both strategies require the design and synthesis of polymers that have well-defined characteristics such that the necessary fine control over the morphology, interfacial properties, and simplicity of processes can be realized. By combining tailored self-assembly processes (a “bottom-up” approach) with microfabrication processes (a “top-down” approach), the ever-present thirst of the consumer for faster, better, and cheaper devices can be met in very simple, yet robust, ways. The integration of novel chemistries with the manipulation of self-assembly will be treated in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Segalman, Mater. Sci. Eng. R48 (6) (2005) p. 191.

    Article  CAS  Google Scholar 

  2. G. Krausch, Mater. Sci. Eng. R14 (1) (1995) p. 1.

    CAS  Google Scholar 

  3. T. Hashimoto, M. Shibayma, M. Fujimura, and H. Kawai, in Block Copolymers, Science and Technology, edited by D.J. Meier (Harwood Academic, London, 1983) p. 63.

    Google Scholar 

  4. F.S. Bates and G.H. Fredrickson, Annu. Rev. Phys. Chem. 41 (1990) p. 525.

    Article  CAS  Google Scholar 

  5. G.H. Fredrickson and F.S. Bates, Annu. Rev. Mater. Sci. (1995) p. 1.

  6. I.W. Hamley, The Physics of Block Copolymers (Oxford University Press, New York, 1998) p. 125.

    Google Scholar 

  7. G. Coulon, V.R. Deline, D.C. Miller, and T.P. Russell, Macromolecules 22 (1989) p. 4600.

    Article  Google Scholar 

  8. G. Coulon, T.P. Russell, V.R. Deline, and P.F. Green, Macromolecules 22 (6) (1989) p. 2581.

    Article  CAS  Google Scholar 

  9. S.H. Anastasiadis, T.P. Russell, S.K. Satija, and C.F. Majkrzak, Phys. Rev. Lett. 62 (16) (1989) p. 1852.

    Article  CAS  Google Scholar 

  10. K. Amundson, E. Helfand, D.D. Davis, X. Quan, S.S. Patel, and S.D. Smith, Macromolecules 24 (24) (1991) p. 6546.

    Article  CAS  Google Scholar 

  11. K. Amundson, E. Helfand, and X. Quan, Abstracts of Papers of the Am. Chem. Soc. 204 (1992) p. 164-POLY.

    Google Scholar 

  12. K. Amundson, E. Helfand, X. Quan, and S.D. Smith, Macromolecules 26 (11) (1993) p. 2698.

    Article  CAS  Google Scholar 

  13. K. Amundson, E. Helfand, X.N. Quan, S.D. Hudson, and S.D. Smith, Macromolecules 27 (22) (1994) p. 6559.

    Article  CAS  Google Scholar 

  14. P. Mansky, J. DeRouchey, T.P. Russell, J. Mays, M. Pitsikalis, T. Morkved, and H. Jaeger, Macromolecules 31 (13) (1998) p. 4399.

    Article  CAS  Google Scholar 

  15. T.L. Morkved, M. Lu, A.M. Urbas, E.E. Ehrichs, H.M. Mansky, and P.F. Green, Science 273 (1996) p. 931.

    Article  CAS  Google Scholar 

  16. T. Thurn-Albrecht, J. DeRouchey, T.P. Russell, and H.M. Jaeger, Macromolecules 33 (9) (2003) p. 3250.

    Article  CAS  Google Scholar 

  17. T. Xu, Y.Q. Zhu, S.P. Gido, P.F. Green, Macromolecules 37 (2004) p. 2625.

    Article  CAS  Google Scholar 

  18. A. Boker, H. Elbs, H. Hansel, A. Knoll, S. Ludwigs, H. Zettl, V. Urban, V. Abetz, A.H.E. Muller, and G. Krausch, Phys. Rev. Lett. 89 133502 (2002).

    Article  CAS  Google Scholar 

  19. A. Boker, H. Elbs, H. Hansel, A. Knoll, S. Ludwigs, H. Zettl, A.V. Zvelindovsky, G.J.A. Sevink, V. Urban, V. Abetz, A.H.E. Muller, and G. Krausch, Macromolecules 36 (21) (2003) p. 8078.

    Article  CAS  Google Scholar 

  20. A. Boker, A. Knoll, H. Elbs, V. Abetz, A.H.E. Muller, and G. Krausch, Macromolecules 35 (4) (2002) p. 1319.

    Article  CAS  Google Scholar 

  21. G. Kim and M. Libera, Macromolecules 31 (8) (1998) p. 2569.

    Article  CAS  Google Scholar 

  22. G. Kim and M. Libera, Macromolecules 31 (8) (1998) p. 2670.

    Article  CAS  Google Scholar 

  23. S.H. Kim, M.J. Misner, M. Kimura, T. Xu, and P.F. Green, Adv. Mater. 16 (3) (2004) p. 226.

    Article  CAS  Google Scholar 

  24. S.H. Kim, M.J. Misner, and P.F. Green, Adv. Mater. 16 (2004) p. 2119.

    Article  CAS  Google Scholar 

  25. Z.Q. Lin, D.H. Kim, X.D. Wu, L. Boosahda, D. Stone, L. LaRose, and P.F. Green, Adv. Mater. 14 (19) (2002) p. 1373.

    Article  CAS  Google Scholar 

  26. P. Mansky, Y. Liu, E. Huang, T.P. Russell, and C.J. Hawker, Science 275 (1997) p. 1458.

    Article  CAS  Google Scholar 

  27. E. Huang, T.P. Russell, C. Harrison, P.M. Chaikin, R.A. Register, C.J. Hawker, and J. Mays, Macromolecules 31 (1998) p. 7641.

    Article  CAS  Google Scholar 

  28. M. Muthukumar, C.K. Ober, and E.L. Thomas, Science 277 (1997) p. 1225.

    Article  CAS  Google Scholar 

  29. M.S. Turner, Phys. Rev. Lett. 69 (12) (1992) p. 1788.

    Article  CAS  Google Scholar 

  30. D.G. Walton, G.J. Kellogg, A.M. Mayes, P. Lambooy, and P.F. Green, Macromolecules 27 (21) (1994) p. 6225.

    Article  CAS  Google Scholar 

  31. K. Matyjaszewski and J. Xia, Chem. Rev. 101 (2001) p. 2921.

    Article  CAS  Google Scholar 

  32. C.J. Hawker, A.W. Bosman, and E. Harth, Chem. Rev. 101 (2001) p. 3661.

    Article  CAS  Google Scholar 

  33. M. Monteiro, J. Polym. Sci., Part A: Polym. Chem. 43 (2005) p. 3189.

    Article  CAS  Google Scholar 

  34. D. Benoit, V. Chaplinski, R. Braslau, and C.J. Hawker, J. Am. Chem. Soc. 121 (1999) p. 3904.

    Article  CAS  Google Scholar 

  35. E. Drockenmuller, L.Y.T. Li, D.Y. Ryu, E. Harth, T.P. Russell, H.C. Kim, and C.J. Hawker, J. Polym. Sci., Part A: Polym. Chem. 43 (2005) p. 1028.

    Article  CAS  Google Scholar 

  36. S. Blomberg, S. Ostberg, E. Harth, A.W. Bosman, B.V. Horn, and C.J. Hawker, J. Polym. Sci., Part A: Polym. Chem. 40 (2002) p. 1309.

    Article  CAS  Google Scholar 

  37. S. Monge, V. Darcos, and D.M. Haddleton, J. Polym. Sci., Part A: Polym. Chem. 42 (2004) p. 6299.

    Article  CAS  Google Scholar 

  38. J. Huang, T. Pintauer, and K. Matyjaszewski, J. Polym. Chem., Part A: Polym. Chem. 42 (2004) p. 3285.

    Article  CAS  Google Scholar 

  39. C.J. Hawker and K.L. Wooley, Science 309 (2005) p. 1200.

    Article  CAS  Google Scholar 

  40. P. Mansky, C.K. Harrison, P.M. Chaikin, R.A. Register, and N. Yao, Appl. Phys. Lett. 68 (18) (1996) p. 2586.

    Article  CAS  Google Scholar 

  41. M. Park, C. Harrison, P.M. Chaikin, R.A. Register, and D.H. Adamson, Science 276 (1997) p. 1401.

    Article  CAS  Google Scholar 

  42. J. Heier, E.J. Kramer, S. Walheim, and G. Krausch, Macromolecules 30 (21) (1997) p. 6610.

    Article  CAS  Google Scholar 

  43. T.P. Russell, E. Huang, and L. Rockford, in Encyclopedia of Materials: Science and Technology, edited by T.P. Lodge (Elsevier Science Ltd., London, 2001) p. 676.

    Chapter  Google Scholar 

  44. H.C. Kim and P.F. Green, J. Polym. Sci. Part B: Polym. Phys. 39 (6) (2001) p. 663.

    Article  CAS  Google Scholar 

  45. P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh, and R.G. Nuzzo, J. Am. Chem. Soc. 113 (19) (1991) p. 7152.

    Article  CAS  Google Scholar 

  46. E.B. Troughton, C.D. Bain, G.M. Whitesides, R.G. Nuzzo, D.L. Allara, and M.D. Porter, Langmuir 4 (2) (1988) p. 365.

    Article  CAS  Google Scholar 

  47. A.Y. Fadeev and T.J. McCarthy, Langmuir 16 (18) (2000) p. 7268.

    Article  CAS  Google Scholar 

  48. L. Netzer and J. Sagiv, J. Am. Chem. Soc. 105 (3) (1983) p. 674.

    Article  CAS  Google Scholar 

  49. D.Y. Ryu, K. Shin, E. Drockenmuller, C.J. Hawker, and T.P. Russell, Science 308 (2005) p. 236.

    Article  CAS  Google Scholar 

  50. M.J. Fasolka, D.J. Harris, A.M. Mayes, M. Yoon, and S.G.J. Mochrie, Phys. Rev. Lett. 79 (16) (1997) p. 3018.

    Article  CAS  Google Scholar 

  51. E. Sivaniah, Y. Hayashi, S. Matsubara, S. Kiyono, T. Hashimoto, K. Fukunaga, E.J. Kramer, and T. Mates, Macromolecules 38 (5) (2005) p. 1837.

    Article  CAS  Google Scholar 

  52. U. Jeong, D.Y. Ryu, D.H. Kho, J.K. Kim, J.T. Goldbach, D.H. Kim, and P.F. Green, Adv. Mater. 16 (6) (2004) p. 533.

    Article  CAS  Google Scholar 

  53. K. Fukunaga, H. Elbs, R. Magerle, and G. Krausch, Macromolecules 33 (2000) p. 947.

    Article  CAS  Google Scholar 

  54. S. Ludwigs, A. Boker, A. Voronov, and G. Krausch, Nature Mater. 2 (2003) p. 744.

    Article  CAS  Google Scholar 

  55. P. Du, M.Q. Li, K. Douki, X.F. Li, C.R.W. Garcia, A. Jain, D.M. Smilgies, L.J. Fetters, S.M. Gruner, U. Wiesner, and C.K. Ober, Adv. Mater. 16 (12) (2004) p. 953.

    Article  CAS  Google Scholar 

  56. M.Q. Li, K. Douki, K. Goto, X.F. Li, C. Coenjarts, D.M. Smilgies, and C.K. Ober, Chem. Mater. 16 (20) (2004) p. 3800.

    Article  CAS  Google Scholar 

  57. C. Harrison, Z.D. Cheng, S. Sethuraman, D.A. Huse, P.M. Chaikin, D.A. Vega, J.M. Sebastian, R.A. Register, and D.H. Adamson, Phys. Rev. E 66 (1) (2002).

  58. C. Harrison, D.E. Angelescu, M. Trawick, Z.D. Cheng, D.A. Huse, P.M. Chaikin, D.A. Vega, J.M. Sebastian, R.A. Register, and D.H. Adamson, Europhys. Lett. 67 (5) (2004) p. 800.

    Article  CAS  Google Scholar 

  59. D.A. Vega, C.K. Harrison, D.E. Angelescu, M.L. Trawick, D.A. Huse, P.M. Chaikin, and R.A. Register, Phys. Rev. E 71 (6) (2005).

  60. R.A. Segalman, H. Yokoyama, and E.J. Kramer, Adv. Mater. 13 (15) (2001) p. 1152.

    Article  CAS  Google Scholar 

  61. R.A. Segalman, K.E. Schaefer, G.H. Fredrickson, E.J. Kramer, and S. Magonov, Macromolecules 36 (12) (2003) p. 4498.

    Article  CAS  Google Scholar 

  62. R.A. Segalman, A. Hexemer, R.C. Hayward, and E.J. Kramer, Macromolecules 36 (9) (2003) p. 3272.

    Article  CAS  Google Scholar 

  63. C. De Rosa, C. Park, E.L. Thomas, and B. Lotz, Nature 405 (2000) p. 433.

    Article  Google Scholar 

  64. J.Y. Cheng, C.A. Ross, E.L. Thomas, H.I. Smith, and G.J. Vancso, Appl. Phys. Lett. 81 (19) (2002) p. 3657.

    Article  CAS  Google Scholar 

  65. J.Y. Cheng, C.A. Ross, E.L. Thomas, H.I. Smith, and G.J. Vancso, Adv. Mater. 15 (19) (2003) p. 1599.

    Article  CAS  Google Scholar 

  66. J.Y. Cheng, A.M. Mayes, and C.A. Ross, Nature Mater. 3 (2004) p. 823.

    Article  CAS  Google Scholar 

  67. D. Sundrani, S.B. Darling, and S.J. Sibener, Langmuir 20 (12) (2004) p. 5091.

    Article  CAS  Google Scholar 

  68. D. Sundrani, S.B. Darling, and S.J. Sibener, Nano Lett. 4 (2) (2004) p. 273.

    Article  CAS  Google Scholar 

  69. D.E. Angelescu, J.H. Waller, D.H. Adamson, P. Deshpande, S.Y. Chou, R.A. Register, and P.M. Chaikin, Adv. Mater. 16 (19) (2004) p. 1736.

    Article  CAS  Google Scholar 

  70. V. Pelletier, D. Angelescu, J. Waller, D. Adamson, R. Register, and P. Chaikin, Bull. Am. Phys. Soc. 49 (2004) p. 1277.

    Google Scholar 

  71. M. Kimura, M.J. Misner, T. Xu, S.H. Kim, and P.F. Green, Langmuir 19 (2003) p. 9910.

    Article  CAS  Google Scholar 

  72. L. Rockford, Y. Liu, P. Mansky, T.P. Russell, M. Yoon, and S.G.J. Mochrie, Phys. Rev. Lett. 82 (12) (1999) p. 2602.

    Article  CAS  Google Scholar 

  73. L. Rockford, S.G.J. Mochrie, and P.F. Green, Macromolecules 34 (2001) p. 1487.

    Article  CAS  Google Scholar 

  74. S.O. Kim, H.H. Solak, M.P. Stoykovich, N.J. Ferrier, J.J. de Pablo, and P.F. Nealey, Nature 424 (2003) p. 411.

    Article  CAS  Google Scholar 

  75. M.P. Stoykovich, M. Muller, S.O. Kim, H.H. Solak, E.W. Edwards, J.J. de Pablo, and P.F. Nealey, Science 308 (2005) p. 1442.

    Article  CAS  Google Scholar 

  76. J.P. Spatz, A. Roescher, S. Sheiko, G. Krausch, and M. Moller, Adv. Mater. 7 (8) (1995) p. 731.

    Article  CAS  Google Scholar 

  77. J. Ding and G. Liu, J. Phys. Chem. 102 (31) (1998) p. 6107.

    Article  CAS  Google Scholar 

  78. J. Ding, G. Liu, and P. Hairy, Chem. Mater. 10 (2) (1998) p. 537.

    Article  CAS  Google Scholar 

  79. G. Liu, Colloid & Interface Sci. 3 (1998) p. 200.

    CAS  Google Scholar 

  80. T. Xu, J.T. Goldbach, M.J. Misner, S.H. Kim, T. P. Russell, A. Gibaud, O. Gang, B. Ocko, K.W. Guarini, C.T. Black, and C.J. Hawker, Macromolecules 37 (2004) p. 2972.

    Article  CAS  Google Scholar 

  81. K. Temple, K. Kulbaba, K.N. Power-Billard, I. Manners, K.A. Leach, T. Xu, T.P. Russell, and C.J. Hawker, Adv. Mater. 15 (4) (2003) p. 297.

    Article  CAS  Google Scholar 

  82. J.W. Labadie, J.L. Hedrick, V. Wakharkar, D.C. Hofer, and P.F. Green, IEEE Trans. Components Hybrids and Manufacturing Technology 15 (6) (1992) p. 925.

    Article  CAS  Google Scholar 

  83. J.M. Leiston-Belanger, T.P. Russell, E. Drockenmuller, and C.J. Hawker, Macromolecules 38 (2005) p. 7676.

    Article  CAS  Google Scholar 

  84. E. Drockenmuller, L.T.T. Li, D.Y. Ryu, E. Harth, T.P. Russell, H.-C. Kim, and C.J. Hawker, “Covalent Stabilization of Nanostructures: Robust Block Copolymer Templates from Novel Thermo-Reactive Systems,” Adv. Mater. (2006) accepted for publication.

  85. O. Ikkala and G.T. Brinke, Science 295 (2002) p. 2407.

    Article  CAS  Google Scholar 

  86. J. Ruokolainen, R. Makinen, M. Torkkeli, T. Makela, R. Serimaa, G.T. Brinke, and O. Ikkala, Science 280 (1998) p. 557.

    Article  CAS  Google Scholar 

  87. S. Valkama, T. Ruotsalainen, H. Kosonen, J. Ruokolainen, M. Torkkeli, R. Seriumaa, G.T. Brinke, and O. Ikkala, Macromolecules 36 (11) (2003) p. 3986.

    Article  CAS  Google Scholar 

  88. H.Y. Fan and J. Brinker, in Mesoporous Crystals and Related Nano-Structured Materials, 148, edited by Osamu Terasaki (Elsevier, Amsterdam, 2004) p. 213.

    Chapter  Google Scholar 

  89. P.D. Yang, T. Deng, D.Y. Zhao, P.Y. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, and G.D. Stucky, Science 282 (1998) p. 2244.

    Article  CAS  Google Scholar 

  90. P.D. Yang, G. Wirnsberger, H.C. Huang, S.R. Cordero, M.D. McGehee, B. Scott, T. Deng, G.M. Whitesides, B.F. Chmelka, S.K. Buratto, and G.D. Stucky, Science 287 (2000) p. 465.

    Article  CAS  Google Scholar 

  91. H. Maekawa, J. Esquena, S. Bishop, C. Solans, and B.F. Chmelka, Adv. Mater. 15 (7–8) (2003) p. 591.

    Article  CAS  Google Scholar 

  92. S.R. Williams, H.D. Maynard, and B.F. Chmelka, J. Labelled Comp. Radiopharm. 42 (10) (1999) p. 927.

    Article  CAS  Google Scholar 

  93. A.C. Finnefrock, R. Ulrich, G.E.S. Toombes, S.M. Gruner, and U. Wiesner, J. Am. Chem. Soc. 125 (43) (2003) p. 13084.

    Article  CAS  Google Scholar 

  94. C. Garcia, Y.M. Zhang, F. DiSalvo, and U. Wiesner, Angewandte Chemie, Intl. Ed. 42 (13) (2003) p. 1526.

    Article  CAS  Google Scholar 

  95. S. Renker, S. Mahajan, D.T. Babski, I. Schnell, A. Jain, J. Gutmann, Y.M. Zhang, S.M. Gruner, H.W. Spiess, and U. Wiesner, Macromol. Chem. Phys. 205 (8) (2004) p. 1021.

    Article  CAS  Google Scholar 

  96. K. Schumacher, C.D. von Hohenesche, K.K. Unger, R. Ulrich, A. Du Chesne, U. Wiesner, and H.W. Spiess, Adv. Mater. 11 (14) (1999) p. 1194.

    Article  CAS  Google Scholar 

  97. H.M. Mao and M.A. Hillmyer, Macromolecules 38 (9) (2005) p. 4038.

    Article  CAS  Google Scholar 

  98. J. Rzayev and M.A. Hillmyer, Macromolecules 38 (1) (2005) p. 3.

    Article  CAS  Google Scholar 

  99. R.A. Pai, R. Humayun, M.T. Schulberg, A. Sengupta, J.N. Sun, and J.J. Watkins, Science 303 (2004) p. 507.

    Article  CAS  Google Scholar 

  100. B.D. Vogt, R.A. Pai, H.J. Lee, R.C. Hedden, C.L. Soles, W.L. Wu, E.K. Lin, B.J. Bauer, and J.J. Watkins, Chem. Mater. 17 (6) (2005) p. 1398.

    Article  CAS  Google Scholar 

  101. C.T. Black, K.W. Guarini, K.R. Milkove, S.M. Baker, T.P. Russell, and M.T. Tuominen, Appl. Phys. Lett. 79 (3) (2001) p. 409.

    Article  CAS  Google Scholar 

  102. K.W. Guarini, C.T. Black, K.R. Milkove, and R.L. Sandstrom, J. Vac. Sci. & Tech. B 19 (6) (2001) p. 2784.

    Article  CAS  Google Scholar 

  103. K. Asakawa and T. Hiraoka, Jap. J. Appl. Phys. Pt. 1 41 (10) (2002) p. 6112.

    Article  CAS  Google Scholar 

  104. K. Liu, S.M. Baker, I.K. Schuller, M. Tuominen, and P.F. Green, Phys. Rev. B 6305 (6) (2001) p. 403.

    Google Scholar 

  105. K. Naito, H. Hieda, M. Sakurai, Y. Kamata, and K. Asakawa, IEEE Trans. on Magnetics 38 (5) (2002) p. 1949.

    Article  CAS  Google Scholar 

  106. I.Y. Tsai, M. Kimura, and P.F. Green, Langmuir 20 (14) (2004) p. 5952.

    Article  CAS  Google Scholar 

  107. D. Zschech, D.H. Kim, A.P. Milenin, S. Hopfe, R. Scholz, P. Goering, S. Senz, C.J. Hawker, T.P. Russell, M. Steinhart, and U. Goesele, “High-Temperature-Resistant, Ordered Gold Nanoparticle Arrays,” unpublished.

  108. T. Thurn-Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, and P.F. Green, Science 290 (2000) p. 2126.

    Article  CAS  Google Scholar 

  109. D.H. Kim, X. Jia, Z. Lin, K. Guarini, and P.F. Green, Adv. Mater. 16 (8) (2004) p. 702.

    Article  CAS  Google Scholar 

  110. D.H. Kim, K.H.A. Lau, U. Jeong, C.J. Hawker, J.K. Kim, T.P. Russell, and W. Knoll, “An optical waveguide study on the nanopore formation in block copolymer/homopolymer thin films by selective solvent swelling,” unpublished.

  111. I.Y. Tsai, M. Kimura, R. Stockton, A. Green, R. Puig, B. Jacobson, and P.F. Green, J. Biomed. Mater. Res., Pt. A 71A (3) (2004) p. 462.

    Article  CAS  Google Scholar 

  112. S.Y. Yang, I. Ryu, H.Y. Kim, S.K. Jang, J.K. Kim, and P.F. Green, “Nanoporous Membrane with Ultrahigh Selectivity and Flux Suitable for Filtration of Viruses,” unpublished.

  113. C. Auschra and R. Stadler, Macromolecules 26 (1993) p. 6364.

    Article  CAS  Google Scholar 

  114. U. Breiner, U. Krappe, V. Abetz, and R. Stadler, Macromolecules 198 (1997) p. 1051.

    CAS  Google Scholar 

  115. U. Breiner, U. Krappe, and R. Stadler, Macromol. Rapid Commun. 17 (1996) p. 567.

    Article  CAS  Google Scholar 

  116. H. Elbs, K. Fukunaga, R. Stadler, and G. Sauer, Macromolecules 32 (4) (1999) p. 1204.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawker, C.J., Russell, T.P. Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes. MRS Bulletin 30, 952–966 (2005). https://doi.org/10.1557/mrs2005.249

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.249

Keywords

Navigation