Skip to main content
Log in

Three-Dimensional Coherent X-Ray Diffraction Microscopy

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

X-rays have been widely used in the structural analysis of materials because of their significant penetration ability, at least on the length scale of the granularity of most materials. This allows, in principle, for fully three-dimensional characterization of the bulk properties of a material. One of the main advantages of x-ray diffraction over electron microscopy is that destructive sample preparation to create thin sections is often avoidable. A major disadvantage of x-ray diffraction with respect to electron microscopy is its inability to produce real-space images of the materials under investigation—there are simply no suitable lenses available. There has been significant progress in x-ray microscopy associated with the development of lenses, usually based on zone plates, Kirkpatrick–Baez mirrors, or compound refractive lenses. These technologies are far behind the development of electron optics, particularly for the large magnification ratios needed to attain high resolution. In this article, the authors report progress toward the development of an alternative general approach to imaging, the direct inversion of diffraction patterns by computation methods. By avoiding the use of an objective lens altogether, the technique is free from aberrations that limit the resolution, and it can be highly efficient with respect to radiation damage of the samples. It can take full advantage of the three-dimensional capability that comes from the x-ray penetration. The inversion step employs computational methods based on oversampling to obtain a general solution of the diffraction phase problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.B. Yun, J. Kirz and D. Sayre Acta Crystallogr. A 43 (1987) p. 131.

    CAS  Google Scholar 

  2. M. Sutton S.G.J Mochrie T. Greytak S.E. Nagler, L.E. Berman, G.A. Held, and G.B. Stephenson, Nature 352 (1991) p. 608.

    Google Scholar 

  3. D. Sayre Acta Crystallogr. 5 (1952) p. 843.

    Google Scholar 

  4. R.H.T Bates, Optik 61 (1982) p. 247.

    Google Scholar 

  5. R.P. Millane, J. Opt. Soc. Am. A 13 (1996) p. 725.

    Google Scholar 

  6. J. Miao D. Sayre and H.N. Chapman, J. Opt. Soc. Am. A 15 (1998) p. 1662.

    Google Scholar 

  7. J. Miao T. Ishikawa E.H. Anderson, and K.O. Hodgson, Phys. Rev. B 67174104 (2003).

    Google Scholar 

  8. J. Miao and D. Sayre Acta Crystallogr. A 56 (2000) p. 596.

    CAS  Google Scholar 

  9. J. Miao, T. Ishikawa, B. Johnson, E.H. Anderson, B. Lai and K.O. Hodgson, Phys. Rev. Lett. 89088303 (2002).

    Google Scholar 

  10. Y.M. Bruck and L.G. Sodin, Opt. Commun. 30 (1979) p. 304.

    Google Scholar 

  11. J.R. Fienup, Opt. Lett. 3 (1978) p. 27.

    CAS  Google Scholar 

  12. R.W. Gerchberg and W.O. Saxton, Optik 35 (1972) p. 237.

    Google Scholar 

  13. S. Marchesini, H. He, H.N. Chapman, S.P. Hau-Riege, A. Noy, M.R. Howells, U. Weierstall and J.C.H Spence, Phys. Rev. B 68140101 (2003).

    Google Scholar 

  14. J. Miao, P. Charalambous, J. Kirz and D. Sayre, Nature 400 (1999) p. 342.

    CAS  Google Scholar 

  15. H. He, S. Marchesini, M.R. Howells, U. Weierstall, H.N. Chapman, S. Hau-Riege, A. Noy and J.C.H Spence, Phys. Rev. B 67174114 (2003).

    Google Scholar 

  16. I.K. Robinson and I.A. Vartanyants, Appl. Surf. Sci. 182 (2001) p. 186.

    CAS  Google Scholar 

  17. G.J. Williams, M.A. Pfeifer, I.A. Vartanyants, and I.K. Robinson, Phys. Rev. Lett. 90175501–1 (2003).

    CAS  Google Scholar 

  18. I.A. Vartanyants and I.K. Robinson, J. Phys.: Condens. Matter 1310593–611 (2001).

    CAS  Google Scholar 

  19. H.W. Hayden, W.G. Moffat, and J. Wulff, Structure and Properties of Materials III (John Wiley & Sons, New York, 1965).

    Google Scholar 

  20. A.H. Cottrell, The Mechanical Properties of Metals (John Wiley & Sons, New York, 1964).

    Google Scholar 

  21. J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L.A. Nagahara, Science 300 (2003) p. 1419.

    CAS  Google Scholar 

  22. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert and J. Hajdu, Nature 406 (2000) p. 752.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, I.K., Miao, J. Three-Dimensional Coherent X-Ray Diffraction Microscopy. MRS Bulletin 29, 177–181 (2004). https://doi.org/10.1557/mrs2004.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.56

Keyword

Navigation