Skip to main content
Log in

Inkjet Printing of Highly Loaded Particulate Suspensions

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Inkjet printing is an attractive method for patterning and fabricating objects directly from design or image files without the need for masks, patterns, or dies. In order to achieve this with metals or ceramics, it is often necessary to print them as highly concentrated suspensions of powders in liquids. Such liquid suspensions must have physical properties appropriate to the inkjet delivery mechanism. These properties are presented using a nondimensional formalism to illustrate the requirements for both drop formation and spreading on impact. Further critical issues relevant to inkjet printing of particulate suspensions are discussed and illustrated with experiments on a model alumina-containing colloidal suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, ASME J. Eng. Ind. 114 (1992) p. 481.

    Google Scholar 

  2. J. Yoo, K. Cho, W. Bae, M. Cima, and S. Suresh, J. Am. Ceram. Soc. 81 (1998) p. 21.

    Google Scholar 

  3. W.D. Teng, M.J. Edirisinghe, and J.R.G. Evans, J. Am. Ceram. Soc. 80 (1997) p. 486.

    Google Scholar 

  4. Q.F. Xiang, J.R.G. Evans, M.J. Edirisinghe, and P.F. Blazdell, Proc. Inst. Mech. Eng. B-J. Eng. Manuf. 211 (1997) p. 211.

    Google Scholar 

  5. C.E. Slade and J.R.G. Evans, J. Mater. Sci. Lett. 17 (1998) p. 1669.

    Google Scholar 

  6. M. Mott, J.H. Song, and J.R.G. Evans, J. Am. Ceram. Soc. 82 (1999) p. 1653.

    Google Scholar 

  7. J.E. Fromm, IBM J. Res. Dev. 28 (1984) p. 322.

    Google Scholar 

  8. J.F. Dijksman, J. Fluid Mech. 139 (1984) p. 173.

    Google Scholar 

  9. N. Reis and B. Derby, in Solid Freeform and Additive Fabrication—2000, edited by S.C. Danforth, D. Dimos, and F.B. Prinz (Mater. Res. Soc. Symp. Proc. 625, Warrendale, PA, 2000) p. 117.

    Google Scholar 

  10. M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, and J. Mostaghimi, Phys. Fluids 8 (1996) p. 650.

    Google Scholar 

  11. C.D. Snow and M. Hadfield, Proc. R. Soc. London 373 (1981) p. 419.

    Google Scholar 

  12. J.A. Lewis, J. Am. Ceram. Soc. 83 (2000) p. 2341.

    Google Scholar 

  13. T.A. Ring, Fundamentals of Ceramic Powder Processing and Synthesis (Academic Press, London, 1996).

    Google Scholar 

  14. L. Bergstrom, J. Am. Ceram. Soc. 79 (1996) p. 3033.

    Google Scholar 

  15. B.H. Kaye, Powder Mixing (Chapman & Hall, London, 1997).

    Google Scholar 

  16. K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, and B. Derby, J. Am. Ceram. Soc. 84 (2001) p. 2514.

    Google Scholar 

  17. C. Ainsley, N. Reis, and B. Derby, J. Mater. Sci. 37 (2002) p. 3155.

    Google Scholar 

  18. N. Reis, PhD thesis, University of Oxford, 2002.

    Google Scholar 

  19. X. Zhao, J.R.G. Evans, M.J. Edirisinghe, and J.H. Song, J. Mater. Sci. 37 (2002) p. 1987.

    Google Scholar 

  20. B. Derby, D.H. Lee, T. Wang, and D. Hall, in Rapid Prototyping Technologies, edited by A. Pique, A.S. Holmes, and D.B. Dimos (Mater. Res. Soc. Symp. Proc. 758, Warrendale, PA, 2003) p. 113.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derby, B., Reis, N. Inkjet Printing of Highly Loaded Particulate Suspensions. MRS Bulletin 28, 815–818 (2003). https://doi.org/10.1557/mrs2003.230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.230

Keywords

Navigation