Skip to main content
Log in

Electron tomography for functional nanomaterials

  • Nanoscale Tomography Using X-rays and Electrons
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Modern nanomaterials contain complexity that spans all three dimensions—from multigate semiconductors to clean energy nanocatalysts to complex block copolymers. For nanoscale characterization, it has been a long-standing goal to observe and quantify the three-dimensional (3D) structure—not just surfaces, but the entire internal volume and the chemical arrangement. Electron tomography estimates the complete 3D structure of nanomaterials from a series of two-dimensional projections taken across many viewing angles. Since its first introduction in 1968, electron tomography has progressed substantially in resolution, dose, and chemical sensitivity. In particular, scanning transmission electron microscope tomography has greatly enhanced the study of 3D nanomaterials by providing quantifiable internal morphology and spectroscopic detection of elements. Combined with recent innovations in computational reconstruction algorithms and 3D visualization tools, scientists can interactively dissect volumetric representations and extract meaningful statistics of specimens. This article highlights the maturing field of electron tomography and the widening scientific applications that utilize 3D structural, chemical, and functional imaging at the nanometer and subnanometer length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. B.D.A. Levin, E. Padgett, C.-C. Chen, M.C. Scott, R. Xu, W. Theis, Y. Jiang, Y. Yang, C. Ophus, H. Zhang, D.-H. Ha, D. Wang, Y. Yu, H.D. Abruña, R.D. Robinson, P. Ercius, L.F. Kourkoutis, J. Miao, D.A. Muller, R. Hovden, Sci. Data 3, 160041 (2016).

    Google Scholar 

  2. D.J. De Rosier, A. Klug, Nature 217 (5124), 130 (1968).

    Google Scholar 

  3. R.A. Crowther, L.A. Amos, J.T. Finch, D.J.D. Rosier, A. Klug, Nature 226 (5244), 421 (1970).

    Google Scholar 

  4. W. Hoppe, Hoppe-Seyler’s Z. Physiol. Chem. 355, 1483 (1974).

    Google Scholar 

  5. W. Hoppe, H.J. Schramm, M. Sturm, N. Hunsmann, J. Gaßmann, Z. Naturforsch. A 31 (11), 1380 (1976).

    Google Scholar 

  6. Protein Data Bank in Europe, https://www.ebi.ac.uk/pdbe/emdb/statistics_emmethod.html (accessed December 2019)/pdbe/emdb/statistics_emmethod.html (accessed December 2019).

  7. H. Jinnai, Y. Nishikawa, R.J. Spontak, S.D. Smith, D.A. Agard, T. Hashimoto, Phys. Rev. Lett. 84 (3), 518 (2000).

    Google Scholar 

  8. A.J. Koster, U. Ziese, A.J. Verkleij, A.H. Janssen, K.P. de Jong, J. Phys. Chem. B 104 (40), 9368 (2000).

    Google Scholar 

  9. R. Henderson, P. Unwin, Nature 257, 28 (1975).

    Google Scholar 

  10. T.J.A. Slater, A. Janssen, P.H.C. Camargo, M.G. Burke, N.J. Zaluzec, S.J. Haigh, Ultramicroscopy 162, 61 (2016).

    Google Scholar 

  11. P.A. Midgley, M. Weyland, Ultramicroscopy 96 (3), 413 (2003).

    Google Scholar 

  12. E. Candes, J. Romberg, “Robust Signal Recovery from Incomplete Observations,” 2006 IEEE Int. Conf. Image Proc. (2006), pp. 1281–1284.

  13. L.M. Brown, P.E. Batson, N. Dellby, O.L. Krivanek, Ultramicroscopy 157, 88 (2015).

    Google Scholar 

  14. P.A. Midgley, M. Weyland, J.M. Thomas, B.F.G. Johnson, Chem. Commun. 10, 907 (2001).

  15. H. Zhang, D.-H. Ha, R. Hovden, L.F. Kourkoutis, R.D. Robinson, Nano Lett. 11 (1), 188 (2010).

    Google Scholar 

  16. J. Radon, Mathematische-Physische 69, 262 (1917).

    Google Scholar 

  17. International Technology Roadmap for Semiconductors, (2014), http://www.itrs2.net.

  18. P.D. Cherns, F. Lorut, S. Becu, C. Dupré, K. Tachi, D. Cooper, A. Chabli, T. Ernst, AIP Conf. Proc. 1173 (1), 290 (2009).

    Google Scholar 

  19. Y. Xie, W. Kim, Y. Kim, S. Kim, J. Gonsalves, M. BrightSky, C. Lam, Y. Zhu, J.J. Cha, Adv. Mater. 30 (9), 1705587 (2018).

    Google Scholar 

  20. C. Kübel, J. Kübel, S. Kujawa, J.S. Luo, H.M. Lo, J.D. Russell, AIP Conf. Proc. 817 (1), 223 (2006).

    Google Scholar 

  21. P. Ercius, M. Weyland, D.A. Muller, L.M. Gignac, Appl. Phys. Lett. 88 (24), 243116 (2006).

    Google Scholar 

  22. H.L. Xin, P. Ercius, K.J. Hughes, J.R. Engstrom, D.A. Muller, Appl. Phys. Lett. 96 (22), 223108 (2010).

    Google Scholar 

  23. G. Möbus, R.C. Doole, B.J. Inkson, Ultramicroscopy 96 (3), 433 (2003).

    Google Scholar 

  24. N.J. Zaluzec, Micros. Today 17 (4), 56 (2009).

    Google Scholar 

  25. H.S. von Harrach, P. Dona, B. Freitag, H. Soltau, A. Niculae, M. Rohde, Microsc. Microanal. 15 (2), 208 (2009).

    Google Scholar 

  26. K. Lepinay, F. Lorut, R. Pantel, T. Epicier, Micron 47, 43 (2013).

    Google Scholar 

  27. A. Yurtsever, M. Weyland, D.A. Muller, Appl. Phys. Lett. 89 (15), 151920 (2006).

    Google Scholar 

  28. M. Weyland, P.A. Midgley, Microsc. Microanal. 9 (6), 542 (2003).

    Google Scholar 

  29. M.H. Gass, K.K.K. Koziol, A.H. Windle, P.A. Midgley, Nano Lett. 6 (3), 376 (2006).

    Google Scholar 

  30. S.M. Collins, E. Ringe, M. Duchamp, Z. Saghi, R.E. Dunin-Borkowski, P.A. Midgley, ACS Photonics 2 (11), 1628 (2015).

    Google Scholar 

  31. L. Yedra, A. Eljarrat, R. Arenal, E. Pellicer, M. Cabo, A. López-Ortega, M. Estrader, J. Sort, M.D. Baró, S. Estradé, F. Peiró, Ultramicroscopy 122, 12 (2012).

    Google Scholar 

  32. K. Jarausch, P. Thomas, D.N. Leonard, R. Twesten, C.R. Booth, Ultramicroscopy 109 (4), 326 (2009).

    Google Scholar 

  33. D. Wang, Y. Yu, H.L. Xin, R. Hovden, P. Ercius, J.A. Mundy, H. Chen, J.H. Richard, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Nano Lett. 12 (10), 5230 (2012).

    Google Scholar 

  34. E. Padgett, N. Andrejevic, Z. Liu, A. Kongkanand, W. Gu, K. Moriyama, Y. Jiang, S. Kumaraguru, T.E. Moylan, R. Kukreja, D.A. Muller, J. Electrochem. Soc. 165 (3), F173 (2018).

  35. Y. Yu, H.L. Xin, R. Hovden, D. Wang, E.D. Rus, J.A. Mundy, D.A. Muller, H.D. Abruña, Nano Lett. 12 (9), 4417 (2012).

    Google Scholar 

  36. A. Genc, L. Kovarik, M. Gu, H. Cheng, P. Plachinda, L. Pullan, B. Freitag, C. Wang, Ultramicroscopy 131, 24 (2013).

    Google Scholar 

  37. W. Xia, Y. Yang, Q. Meng, Z. Deng, M. Gong, J. Wang, D. Wang, Y. Zhu, L. Sun, F. Xu, J. Li, H.L. Xin, ACS Nano 12 (8), 7866 (2018).

    Google Scholar 

  38. A. Klug, R.A. Crowther, Nature 238 (5365), 435 (1972).

    Google Scholar 

  39. R.N. Bracewell, A.C. Riddle, Astrophys. J. 150, 427 (1967).

    Google Scholar 

  40. A. Klug, Philos. Trans. R. Soc. Lond. B Biol. Sci. 261 (837), 173 (1971).

    Google Scholar 

  41. R. Hovden, P. Ercius, Y. Jiang, D. Wang, Y. Yu, H.D. Abruña, V. Elser, D.A. Muller, Ultramicroscopy 140, 26 (2014).

    Google Scholar 

  42. R. Hovden, H.L. Xin, D.A. Muller, Microsc. Microanal. 17 (1), 75 (2010).

    Google Scholar 

  43. M.C. Scott, C.-C. Chen, M. Mecklenburg, C. Zhu, R. Xu, P. Ercius, U. Dahmen, B.C. Regan, J. Miao, Nature 483 (7390), 444 (2012).

    Google Scholar 

  44. Y. Yang, C.-C. Chen, M.C. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu, F. Sun, W. Theis, J. Zhou, M. Eisenbach, P.R.C. Kent, R.F. Sabirianov, H. Zeng, P. Ercius, J. Miao, Nature 542 (7639), 75 (2017).

    Google Scholar 

  45. J. Zhou, Y. Yang, P. Ercius, J. Miao, MRS Bull. 45 (4), 290 (2020).

    Google Scholar 

  46. B.F. McEwen, M. Marko, C.E. Hsieh, C. Mannella, J. Struct. Biol. 138, 47 (2002).

    Google Scholar 

  47. M.R. Howells, T. Beetz, H.N. Chapman, C. Cui, J.M. Holton, C.J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D.A. Shapiro, J.C.H. Spence, D. Starodub. J. Electron Spectrosc. Relat. Phenom. 170 (1), 4 (2009).

  48. P. Gilbert, J. Theor. Biol. 36 (1), 105 (1972).

    Google Scholar 

  49. Y.Z. O’Connor, J.A. Fessler, IEEE Trans. Med. Imaging 25 (5), 582 (2006).

    Google Scholar 

  50. A. Pryor, Y. Yang, A. Rana, M. Gallagher-Jones, J. Zhou, Y.H. Lo, G. Melinte, W. Chiu, J.A. Rodriguez, J. Miao, Sci. Rep. 7 (1), 1 (2017).

    Google Scholar 

  51. K.J. Batenburg, S. Bals, J. Sijbers, C. Kübel, P.A. Midgley, J.C. Hernandez, U. Kaiser, E.R. Encina, E.A. Coronado, G. Van Tendeloo, Ultramicroscopy 109 (6), 730 (2009).

    Google Scholar 

  52. E.J. Candès, T. Tao, IEEE Trans. Inf. Theory 52 (12) 5406 (2006).

  53. E.J. Candès, J. Romberg, T. Tao, IEEE Trans. Inf. Theory 52 (2), 489 (2006).

    Google Scholar 

  54. Z. Saghi, D.J. Holland, R. Leary, A. Falqui, G. Bertoni, A.J. Sederman, L.F. Gladden, P.A. Midgley, Nano Lett. 11 (11), 4666 (2011).

    Google Scholar 

  55. Y. Jiang, R. Hovden, D.A. Muller, V. Elser, Microsc. Microanal. 20 (6), 796 (2014).

    Google Scholar 

  56. J. Schwartz, Y. Jiang, Y. Wang, A. Aiello, P. Bhattacharya, H. Yuan, Z. Mi, N. Bassim, R. Hovden, Microsc. Microanal. 25 (3), 705 (2019).

    Google Scholar 

  57. J.R. Kremer, D.N. Mastronarde, J.R. McIntosh, J. Struct. Biol. 116 (1), 71 (1996).

    Google Scholar 

  58. B. Levin, Y. Jiang, E. Padgett, S. Waldon, C. Quammen, C. Harris, U. Ayachit, M. Hanwell, P. Ercius, D.A. Muller, R. Hovden, Micros. Today 26 (1) 12 (2018).

  59. Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M.W. Tate, J. Park, S.M. Gruner, V. Elser, D.A. Muller, Nature 559 (7714), 343 (2018).

    Google Scholar 

  60. O. Panova, C. Ophus, C.J. Takacs, K.C. Bustillo, L. Balhorn, A. Salleo, N. Balsara, A.M. Minor, Nat. Mater. 18, 860 (2019).

    Google Scholar 

  61. S. Gao, P. Wang, F. Zhang, G.T. Martinez, P.D. Nellist, X. Pan, A.I. Kirkland, Nat. Comm. 8 (1), 163 (2017).

    Google Scholar 

  62. V. Migunov, H. Ryll, X. Zhuge, M. Simson, L. Strüder, K.J. Batenburg, L. Houben, R.E. Dunin-Borkowski, Sci. Rep. 5 (1), 1 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hovden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hovden, R., Muller, D.A. Electron tomography for functional nanomaterials. MRS Bulletin 45, 298–304 (2020). https://doi.org/10.1557/mrs.2020.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.87

Navigation