Skip to main content
Log in

Electron-beam-driven chemical processes during liquid phase transmission electron microscopy

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Liquid phase (or liquid cell) transmission electron microscopy (LP-TEM) has been established as a powerful tool for observing dynamic processes in liquids at nanometer to atomic length scales. However, the simple act of observation using electrons irreversibly alters the nature of the sample. A clear understanding of electron-beam-driven processes during LP-TEM is required to interpret in situ observations and utilize the electron beam as a stimulus to drive nanoscale dynamic processes. In this article, we discuss recent advances toward understanding, quantifying, mitigating, and harnessing electron-beam-driven chemical processes occurring during LP-TEM. We highlight progress in several research areas, including modeling electron-beam-induced radiolysis near interfaces, electron-beam-induced nanocrystal formation, and radiation damage of soft materials and biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2, 532 (2003).

    Google Scholar 

  2. F.M. Ross, Science 350, 9886 (2015).

    Google Scholar 

  3. N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Proc. Natl. Acad. Sci. U.S.A. 106, 2159 (2009).

    Google Scholar 

  4. N. de Jonge, F.M. Ross, Nat. Nanotechnol. 6, 695 (2011).

    Google Scholar 

  5. H.M. Zheng, R.K. Smith, Y.W. Jun, C. Kisielowski, U. Dahmen, A.P. Alivisatos, Science 324, 1309 (2009).

    Google Scholar 

  6. J. Lyu, X. Gong, S.-J. Lee, K. Gnanasekaran, X. Zhang, M.C. Wasson, X. Wang, P. Bai, X. Guo, N.C. Gianneschi, O.K. Farha, J. Am. Chem. Soc. 142, 4609 (2020).

    Google Scholar 

  7. M. Gu, L.R. Parent, B.L. Mehdi, R.R. Unocic, M.T. McDowell, R.L. Sacci, W. Xu, J.G. Connell, P. Xu, P. Abellan, X. Chen, Y. Zhang, D.E. Perea, J.E. Evans, L.J. Lauhon, J.-G. Zhang, J. Liu, N.D. Browning, Y. Cui, I. Arslan, C.-M. Wang, Nano Lett. 13, 6106 (2013).

    Google Scholar 

  8. R.L. Sacci, J.M. Black, N. Balke, N.J. Dudney, K.L. More, R.R. Unocic, Nano Lett. 15, 2011 (2015).

    Google Scholar 

  9. A. Ianiro, H. Wu, M.M.J. van Rijt, M.P. Vena, A.D.A. Keizer, A.C.C. Esteves, R. Tuinier, H. Friedrich, N.A.J.M. Sommerdijk, J.P. Patterson, Nat. Chem. 11, 320 (2019).

    Google Scholar 

  10. A.J. Swallow, Radiation Chemistry: An Introduction (Wiley, New York, 1973).

    Google Scholar 

  11. E. Collinson, A.J. Swallow, Chem. Rev. 56, 471 (1956).

    Google Scholar 

  12. J.M. Grogan, N.M. Schneider, F.M. Ross, H.H. Bau, Nano Lett. 14, 359 (2014).

    Google Scholar 

  13. N.M. Schneider, M.M. Norton, B.J. Mendel, J.M. Grogan, F.M. Ross, H.H. Bau, J. Phys. Chem. C 118, 22373 (2014).

    Google Scholar 

  14. J. Cookman, V. Hamilton, L.S. Price, S.R. Hall, U. Bangert, Nanoscale 12, 4636 (2020).

    Google Scholar 

  15. P. Abellan, B.L. Mehdi, L.R. Parent, M. Gu, C. Park, W. Xu, Y.H. Zhang, I. Arslan, J.G. Zhang, C.M. Wang, J.E. Evans, N.D. Browning, Nano Lett. 14, 1293 (2014).

    Google Scholar 

  16. T.J. Woehl, P. Abellan, J. Microsc. 265, 135 (2017).

    Google Scholar 

  17. E. Sutter, K. Jungjohann, S. Bliznakov, A. Courty, E. Maisonhaute, S. Tenney, P. Sutter, Nat. Commun. 5, 4946 (2014).

    Google Scholar 

  18. T. Gupta, N.M. Schneider, J.H. Park, D. Steingart, F.M. Ross, Nanoscale 10, 7702 (2018).

    Google Scholar 

  19. R.R. Unocic, A.R. Lupini, A.Y. Borisevich, D.A. Cullen, S.V. Kalinin, S. Jesse, Nanoscale 8, 15581 (2016).

    Google Scholar 

  20. M. den Heijer, I. Shao, A. Radisic, M.C. Reuter, F.M. Ross, APL Mater. 2, 022101 (2014).

    Google Scholar 

  21. J.E. Evans, K.L. Jungjohann, N.D. Browning, I. Arslan, Nano Lett. 11, 2809 (2011).

    Google Scholar 

  22. T.J. Woehl, K.L. Jungjohann, J.E. Evans, I. Arslan, W.D. Ristenpart, N.D. Browning, Ultramicroscopy 127, 53 (2013).

    Google Scholar 

  23. K.L. Jungjohann, S. Bliznakov, P.W. Sutter, E.A. Stach, E.A. Sutter, Nano Lett. 13, 2964 (2013).

    Google Scholar 

  24. P. Abellan, T.J. Woehl, L.R. Parent, N.D. Browning, J.E. Evans, I. Arslan, Chem. Commun. 50, 4873 (2014).

    Google Scholar 

  25. T.H. Moser, H. Mehta, C. Park, R.T. Kelly, T. Shokuhfar, J.E. Evans, Sci. Adv. 4, eaaq1202 (2018).

    Google Scholar 

  26. T. Gupta, N.M. Schneider, J.H. Park, D. Steingart, F.M. Ross, Nanoscale 10, 7702 (2018).

    Google Scholar 

  27. J.H. Park, N.M. Schneider, J.M. Grogan, M.C. Reuter, H.H. Bau, S. Kodambaka, F.M. Ross, Nano Lett. 15, 5314 (2015).

    Google Scholar 

  28. A. Hutzler, T. Schmutzler, M.P.M. Jank, R. Branscheid, T. Unruh, E. Spiecker, L. Frey, Nano Lett. 18, 7222 (2018).

    Google Scholar 

  29. S.M. Rehn, M.R. Jones, ACS Energy Lett. 3, 1269 (2018).

    Google Scholar 

  30. M.R. Hauwiller, J.C. Ondry, C.M. Chan, P. Khandekar, J. Yu, A.P. Alivisatos, J. Am. Chem. Soc. 141, 4428 (2019).

    Google Scholar 

  31. T.J. Woehl, J.E. Evans, L. Arslan, W.D. Ristenpart, N.D. Browning, ACS Nano 6, 8599 (2012).

    Google Scholar 

  32. T.J. Woehl, C. Park, J.E. Evans, I. Arslan, W.D. Ristenpart, N.D. Browning, Nano Lett. 14, 373 (2014).

    Google Scholar 

  33. D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, C. Ricolleau, Nano Lett. 15, 2574 (2015).

    Google Scholar 

  34. H.G. Liao, L.K. Cui, S. Whitelam, H.M. Zheng, Science 336, 1011 (2012).

    Google Scholar 

  35. P. Abellan, T.H. Moser, I.T. Lucas, J.W. Grate, J.E. Evans, N.D. Browning, RSC Adv. 7, 3831 (2017).

    Google Scholar 

  36. P. Abellan, L.R. Parent, N. Al Hasan, C. Park, I. Arslan, A.M. Karim, J.E. Evans, N.D. Browning, Langmuir 32, 1468 (2016).

    Google Scholar 

  37. T.J. Woehl, Chem. Mater. (2020), doi:10.1021/acs.chemmater.0c01360.

    Google Scholar 

  38. M. Wang, C. Park, T.J. Woehl, Chem. Mater. 30, 7727 (2018).

    Google Scholar 

  39. T.H. Moser, H. Mehta, C. Park, R.T. Kelly, T. Shokuhfar, J.E. Evans, Sci. Adv. 4, eaaq1202 (2018).

    Google Scholar 

  40. N. Ahmad, G. Wang, J. Nelayah, C. Ricolleau, D. Alloyeau, Nano Lett. 17, 4194 (2017).

    Google Scholar 

  41. J. Sung, B.K. Choi, B. Kim, B.H. Kim, J. Kim, D. Lee, S. Kim, K. Kang, T. Hyeon, J. Park, J. Am. Chem. Soc. 141, 18395 (2019).

    Google Scholar 

  42. M. Sun, B. Yu, M. Hong, Z. Li, F. Lyu, X. Li, Z. Li, X. Wei, Z. Zhang, Y. Zhang, Q. Chen, Small 16, 1906435 (2020).

    Google Scholar 

  43. P. Liu, Q. Chen, Y. Ito, J.H. Han, S.F. Chu, X.D. Wang, K.M. Reddy, S.X. Song, A. Hirata, M.W. Chen, Nano Lett. 20, 1944 (2020).

    Google Scholar 

  44. M.R. Hauwiller, L.B. Frechette, M.R. Jones, J.C. Ondry, G.M. Rotskoff, P. Geissler, A.P. Alivisatos, Nano Lett. 18, 5731 (2018).

    Google Scholar 

  45. S. Wu, M. Li, Y. Sun, Angew. Chem. Int. Ed. Engl. 58, 8995 (2019).

    Google Scholar 

  46. M. Wang, T.U. Dissanayake, C. Park, K. Gaskell, T.J. Woehl, J. Am. Chem. Soc. 141, 13516 (2019).

    Google Scholar 

  47. H.-W. Cheng, S. Yan, J. Li, J. Wang, L. Wang, Z. Skeete, S. Shan, C.-J. Zhong, ACS Appl. Mater. Interfaces 10, 40348 (2018).

    Google Scholar 

  48. B. Dahlgren, M.A. Sabatino, C. Dispenza, M. Jonsson, Macromol. Theory Simul. 29, 1900046 (2020).

    Google Scholar 

  49. P. Ulański Zainuddin, J.M. Rosiak, Radiat. Phys. Chem. 46, 913 (1995).

    Google Scholar 

  50. P. Ulański, I. Janik, J.M. Rosiak, Radiat. Phys. Chem. 52, 289 (1998).

    Google Scholar 

  51. K.H. Nagamanasa, H. Wang, S. Granick, Adv. Mater. 29, 1703555 (2017).

    Google Scholar 

  52. Y.Z. Liu, X.M. Lin, Y.G. Sun, T. Rajh, J. Am. Chem. Soc. 135, 3764 (2013).

    Google Scholar 

  53. T.J. Woehl, T. Prozorov, J. Phys. Chem. C 119, 21261 (2015).

    Google Scholar 

  54. A. Verch, M. Pfaff, N. de Jonge, Langmuir 31, 6956 (2015).

    Google Scholar 

  55. A.W. Girotti, Free Radic. Biol. Med. 1, 87 (1985).

    Google Scholar 

  56. E. Niki, Y. Yoshida, Y. Saito, N. Noguchi, Biochem. Biophys. Res. Commun. 338, 668 (2005).

    Google Scholar 

  57. E.N. Frankel, Prog. Lipid Res. 23, 197 (1984).

    Google Scholar 

  58. G. Stark, J. Membr. Biol. 205, 1 (2005).

    Google Scholar 

  59. H.W. Gardner, Free Radic. Biol. Med. 7, 65 (1989).

    Google Scholar 

  60. G. Stark, Biochim. Biophys. Acta Biomembr. 1071, 103 (1991).

    Google Scholar 

  61. E.N. Frankel, Chem. Phys. Lipids 44, 73 (1987).

    Google Scholar 

  62. M.A. Acosta-Elias, A.J. Burgara-Estrella, J.A. Sarabia-Sainz, E. Silva-Campa, A. Angulo-Molina, K.J. Santacruz-Gomez, B. Castaneda, D. Soto-Puebla, A.I. Ledesma-Osuna, R. Melendrez-Amavizca, M. Pedroza-Montero, Int. J. Radiat. Biol. 93, 1306 (2017).

    Google Scholar 

  63. J. Wong-Ekkabut, Z. Xu, W. Triampo, I.M. Tang, D.P. Tieleman, L. Monticelli, Biophys. J. 93, 4225 (2007).

    Google Scholar 

  64. T. Nakazawa, S. Nagatsuka, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 38, 537 (1980).

    Google Scholar 

  65. T.H. Moser, T. Shokuhfar, J.E. Evans, Micron 117, 8 (2019).

    Google Scholar 

  66. T.H. Moser, H. Mehta, C. Park, R.T. Kelly, T. Shokuhfar, J.E. Evans, Sci. Adv. 4, eaaq1202 (2018).

    Google Scholar 

  67. T. Woehl, S. Kashap, M. Sánchez-Quesada, C. Jiménez López, T. Perez-Gonzalez, D. Faivre, D. Trubytsyn, D. Bazylinski, T. Prozorov, Microsc. Microanal. 20, 1510 (2014).

    Google Scholar 

  68. T.J. Woehl, S. Kashyap, E. Firlar, T. Perez-Gonzalez, D. Faivre, D. Trubitsyn, D.A. Bazylinski, T. Prozorov, Sci. Rep. 4, 6854 (2014).

    Google Scholar 

  69. C. Barth, G. Stark, Biochim. Biophys. Acta Biomembr. 1066, 54 (1991).

    Google Scholar 

  70. L. Kunz, U. Zeidler, K. Haegele, M. Przybylski, G. Stark, Biochemistry 34, 11895 (1995).

    Google Scholar 

  71. C. Barth, G. Stark, M. Wilhelm, Biophys. J. 64, 92 (1993).

    Google Scholar 

  72. I.D. Desai, A.L. Tappel, J. Lipid Res. 4, 204 (1963).

    Google Scholar 

  73. H. Schuessler, K. Schilling, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 45, 267 (1984).

    Google Scholar 

  74. E.R. Stadtman, R.L. Levine, Amino Acids 25, 207 (2003).

    Google Scholar 

  75. W.M. Garrison, Chem. Rev. 87, 381 (1987).

    Google Scholar 

  76. K. Uchida, Y. Kato, S. Kawakishi, Biochem. Biophys. Res. Commun. 169, 265 (1990).

    Google Scholar 

  77. A. Amici, R.L. Levine, L. Tsai, E.R. Stadtman, J. Biol. Chem. 264, 3341 (1989).

    Google Scholar 

  78. G. Taborsky, Biochemistry 12, 1341 (1973).

    Google Scholar 

  79. K. Uchida, S. Kawakishi, FEBS Lett. 332, 208 (1993).

    Google Scholar 

  80. R.C. Armstrong, A.J. Swallow, Radiat. Res. 40 (1969).

  81. P. Koufen, G. Stark, Biochim. Biophys. Acta Mol. Basis Dis. 1501, 44 (2000).

    Google Scholar 

  82. P. Koufen, A. RüCk, D. Brdiczka, S. Wendt, T. Wallimann, G. Stark, Biochem. J. 344, 413 (1999).

    Google Scholar 

  83. K. Hitschke, R. Bühler, H.J. Apell, G. Stark, FEBS Lett. 353, 297 (1994).

    Google Scholar 

  84. J.I. Kourie, Am. J. Physiol. 275, C1 (1998).

    Google Scholar 

  85. V. Cecarini, J. Gee, E. Fioretti, M. Amici, M. Angeletti, A.M. Eleuteri, J.N. Keller, Biochim. Biophys. Acta 1773, 93 (2007).

    Google Scholar 

  86. M.A. Touve, A.S. Carlini, N.C. Gianneschi, Nat. Commun. 10, 4837 (2019).

    Google Scholar 

  87. N.M. Schneider, M.M. Norton, B.J. Mendel, J.M. Grogan, F.M. Ross, H.H. Bau, J. Phys. Chem. C 118, 22373 (2014).

    Google Scholar 

  88. S.V. Tokalov, A.S. Iagunov, Radiat. Environ. Biophys. 50, 265 (2011).

    Google Scholar 

  89. H.S. Eom, H.S. Park, G.E. You, J.Y. Kim, S.Y. Nam, Int. J. Radiat. Biol. 93, 1207 (2017).

    Google Scholar 

  90. S. Acharya, N.N. Bhat, P. Joseph, G. Sanjeev, B. Sreedevi, Y. Narayana, Radiat. Environ. Biophys. 50, 253 (2011).

    Google Scholar 

  91. M.B. Sowa, L.E. Kathmann, B.A. Holben, B.D. Thrall, G.A. Kimmel, Radiat. Res. 164, 677 (2005).

    Google Scholar 

Download references

Acknowledgments

J.E.E. and T.M. were supported by the Environmental Molecular Sciences Laboratory (EMSL) Strategic Science Area Project No. 50427. EMSL (grid.436923.9) is a US Department of Energy Office of Science User Facility sponsored by the Office of Biological and Environmental Research. T.J.W. acknowledges support from the Petroleum Research Fund (Grant No. 61111-DNI10).

Authors

Appendix

Appendix

Taylor J. Woehl-has been an assistant professor in the Department of Chemical and Biomolecular Engineering at the University of Maryland, College Park, since 2016. He leads the Nanoscale Assembly and Electron Microscopy Laboratory. He obtained his PhD degree in chemical engineering from the University of California, Davis, in 2013. He was an assistant research scientist at Ames Laboratory from 2013 to 2014. He received a National Research Council Postdoctoral Fellowship from 2014 to 2016, working in the Material Measurement Laboratory at the National Institute of Standards Technology on new low-voltage transmission electron and ion-microscopy techniques. His research focuses on nanochemistry, colloidal assembly, liquid phase transmission electron microscopy, and protein aggregation. Woehl can be reached by email at tjwoehl@umd.edu.

Trevor Moser-is a research scientist in the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory (PNNL). He received his PhD degree in biochemistry and molecular biology from Michigan Technological University in 2018. He completed postdoctoral research at PNNL. His research interests include characterizing radiation damage of biological materials in liquid-phase transmission electron microscopy, as well as the structural determination of proteins and macromolecular complexes using cryo-EM tomography. Moser can be reached by email at trevor.moser@pnnl.gov.

James Evans-has been a staff scientist in the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory since 2011. He received his PhD degree in biochemistry and molecular biology from the University of California, Davis, in 2007. He completed postdoctoral research at Lawrence Livermore National Laboratory, and then moved to the University of California, Davis, in 2009, where he was awarded his first grant as principal investigator for the development of in situ transmission electron microscopy (TEM). His research focuses on advancing dynamic microscopy, liquid phase TEM, and cryo-EM bioimaging applications. Evans can be reached by email at james.evans@pnnl.gov.

Frances M. Ross-has been the Ellen Swallow Richards Professor in the Department of Materials Science and Engineering at the Massachusetts Institute of Technology since 2018. She received her BA degree in physics and her PhD degree in materials science from Cambridge University, UK. She completed postdoctoral research at AT&T Bell Laboratories. She was a staff scientist at the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory, and a research staff member at the IBM T.J. Watson Research Center. Her research focuses on nanostructure self-assembly, liquid cell microscopy, epitaxy, and electrochemical processes. Ross can be reached by email at fmross@mit.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woehl, T.J., Moser, T., Evans, J.E. et al. Electron-beam-driven chemical processes during liquid phase transmission electron microscopy. MRS Bulletin 45, 746–753 (2020). https://doi.org/10.1557/mrs.2020.227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.227

Navigation