Skip to main content

Advertisement

Log in

Post-treatment techniques for high-performance perovskite solar cells

  • Halide Perovskite Opto- and Nanoelectronic Materials and Devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Perovskite solar cells are poised to be a game changer in photovoltaic technology with a current certified efficiency of 25.2%, already surpassing that for multicrystalline silicon solar cells. On the path to higher efficiencies and much needed higher stability, however, interfacial and bulk defects in the active material should be carefully engineered or passivated. Post-treatment techniques show great potential to address defect issues (e.g., by coarsening the perovskite grains or establishing an interfacial heterogeneous layer). In this article, we summarize current fundamental understanding of the major energy-loss routes in perovskite materials and devices, including bulk/interfacial defects mediated nonradiative recombination and band mismatch-induced recombination. This is followed by a survey of the important post-treatment techniques developed over the past few years to minimize energy loss in perovskite solar cells, including solvent annealing, amine halide solution dripping-induced Ostwald ripening, three-dimensional–two-dimensional interface layer from phenethylammonium iodide (PEAI) dripping, and wide bandgap interface layer engineering from n-hexyl trimethylammonium bromide washing. Finally, we provide a prospective view about further developments of post-treatment techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Google Scholar 

  2. National Renewable Energy Laboratory (NREL), Research Cell Efficiency Records, https://www.nrel.gov/pv (2019).

  3. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Google Scholar 

  4. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Sci. Rep. 2, 591 (2012).

    Google Scholar 

  5. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013).

    Google Scholar 

  6. M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, J. Phys. Chem. Lett. 6, 3209 (2015).

    Google Scholar 

  7. W.J. Yin, T. Shi, Y. Yan, Adv. Mater. 26, 4653 (2014).

    Google Scholar 

  8. W. Tress, Adv. Energy Mater. 7, (2017).

  9. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013).

    Google Scholar 

  10. Y. Bai, H. Chen, S. Xiao, Q. Xue, T. Zhang, Z. Zhu, Q. Li, C. Hu, Y. Yang, Z. Hu, F. Huang, K.S. Wong, H.L. Yip, S.H. Yang, Adv. Funct. Mater. 26, 2950 (2016).

    Google Scholar 

  11. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Il Seok, Nat. Mater. 13, 897 (2014).

    Google Scholar 

  12. D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 1, 16142 (2016).

    Google Scholar 

  13. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Science 348, 1234 (2015).

    Google Scholar 

  14. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 13, 460 (2019).

    Google Scholar 

  15. S. Rühle, Sol. Energy 130, 139 (2016).

    Google Scholar 

  16. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Nature 517, 476 (2015).

    Google Scholar 

  17. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 9, 1989 (2016).

    Google Scholar 

  18. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206 (2016).

    Google Scholar 

  19. Z. Xiao, Y. Zhou, H. Hosono, T. Kamiya, N.P. Padture, Chem. Eur. J. 24, 2305 (2018).

    Google Scholar 

  20. H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J.H. Lee, S. Il Seok, Science 366, 749 (2019).

    Google Scholar 

  21. W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, Appl. Phys. Lett. 106, 221104 (2015).

    Google Scholar 

  22. S. Xiao, H. Chen, F. Jiang, Y. Bai, Z. Zhu, T. Zhang, X. Zheng, G. Qian, C. Hu, Y. Zhou, Y. Qu, S. Yang, Adv. Mater. Interfaces 3, 1600484 (2016).

    Google Scholar 

  23. B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Puretzky, S. Das, I. Ivanov, C. Rouleau, G. Duscher, D. Geohegan, K. Xiao, J. Am. Chem. Soc. 137, 9210 (2015).

    Google Scholar 

  24. P. Schulz, D. Cahen, A. Kahn, Chem. Rev. 119, 3349 (2019).

    Google Scholar 

  25. H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Science 355, 722 (2017).

    Google Scholar 

  26. R. Long, J. Liu, O.V. Prezhdo, J. Am. Chem. Soc. 138, 3884 (2016).

    Google Scholar 

  27. Y. Zhang, S.G. Kim, D.K. Lee, N.G. Park, ChemSusChem 11, 1813 (2018).

    Google Scholar 

  28. J. Shi, X. Xu, D. Li, Q. Meng, Small 11, 2472 (2015).

    Google Scholar 

  29. M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann, S. Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, L. Kegelmann, F. Zu, S. Albrecht, N. Koch, T. Kirchartz, M. Saliba, T. Unold, D. Neher, Energy Environ. Sci. 12, 2778 (2019).

    Google Scholar 

  30. C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Adv. Mater. 31, 1902762 (2019).

    Google Scholar 

  31. A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip, R. Comin, E.H. Sargent, Nano Lett. 14, 6281 (2014).

    Google Scholar 

  32. Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng, H. Lin, Y. Yang, S. Yang, Adv. Energy Mater. 7, 1701038 (2017).

    Google Scholar 

  33. B. Krogmeier, F. Staub, D. Grabowski, U. Rau, T. Kirchartz, Sustain. Energy Fuels 2, 1027 (2018).

    Google Scholar 

  34. E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-Y. Yang, J.H. Noh, J. Seo, Nature 567, 511 (2019).

    Google Scholar 

  35. J. Chen, J.Y. Seo, N.G. Park, Adv. Energy Mater. 8, 1702714 (2018).

    Google Scholar 

  36. T. Bu, J. Li, W. Huang, W. Mao, F. Zheng, P. Bi, X. Hao, J. Zhong, Y.B. Cheng, F. Huang, J. Mater. Chem. A 7, 6793 (2019).

    Google Scholar 

  37. Y. Wang, M. Ibrahim Dar, L.K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Grätzel, Y. Zhao, Science 365, 591 (2019).

    Google Scholar 

  38. J. Zhuang, Y. Wei, Y. Luan, N. Chen, P. Mao, S. Cao, J. Wang, Nanoscale 11, 14553 (2019).

    Google Scholar 

  39. S. Yang, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-Y. Yang, J.H. Noh, J. Seo, Science 365, 473 (2019).

    Google Scholar 

  40. T. Liu, Z. Wang, L. Lou, S. Xiao, S. Zheng, S. Yang, Solar RRL 3, 1900278 (2019).

    Google Scholar 

  41. M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li, D.H. Kim, N. Guo, J.J. Berry, K. Zhu, Y. Zhao, Nat. Commun. 7, 12305 (2016).

    Google Scholar 

  42. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26, 6503 (2014).

    Google Scholar 

  43. C. Wu, Y. Zou, T. Wu, M. Ban, V. Pecunia, Y. Han, Q. Liu, T. Song, S. Duhm, B. Sun, Adv. Funct. Mater. 27, 1700338 (2017).

    Google Scholar 

  44. C.H. Chiang, C.G. Wu, ACS Nano 12, 10355 (2018).

    Google Scholar 

  45. S. Xiao, Y Bai, X. Meng, T. Zhang, H. Chen, X. Zheng, C. Hu, Y. Qu, S. Yang, Adv. Funct. Mater. 27, 1604944 (2017).

    Google Scholar 

  46. D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G.F. Trindade, J.F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R.H. Friend, Q. Gong, H.J. Snaith, R. Zhu, Science 360, 1442 (2018).

    Google Scholar 

  47. J. Chen, S.G. Kim, N.G. Park, Adv. Mater. 30, 1801948 (2018).

    Google Scholar 

  48. Y. Zhang, J. Chen, X. Lian, M. Qin, J. Li, T.R. Andersen, X. Lu, G. Wu, H. Li, H. Chen, Small Methods 3, 1900375 (2019).

    Google Scholar 

  49. N.D. Pham, V.T. Tiong, D. Yao, W. Martens, A. Guerrero, J. Bisquert, H. Wang, Nano Energy 41, 476 (2017).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from NSFC (21905006, 21972006, 51961165105, and 51773230), Shenzhen Peacock Plan (KQTD2016053015544057), the Shenzhen and Hong Kong Joint Research Program (SGLH20180622092406130), the Nanshan Pilot Plan (LHTD20170001), and the Guangdong Science and Technology Program (2017B0303 14002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihe Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Li, Y., Zheng, S. et al. Post-treatment techniques for high-performance perovskite solar cells. MRS Bulletin 45, 431–438 (2020). https://doi.org/10.1557/mrs.2020.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.141

Navigation