Skip to main content

Advertisement

Log in

Nanoporous metal by dealloying for electrochemical energy conversion and storage

  • Dealloyed Nanoporous Materials with Interface-Controlled Behavior
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metallic materials are key for electrochemical energy conversion and storage when they are tailored into electrodes designed for rapid reaction kinetics, high electrical conductivities, and high stability. Nanoporous metals formed by dealloying could meet all of these requirements, as the dealloyed products beckon energy researchers with their fascinating structures and outstanding performance. In this article, we discuss the characteristics of dealloyed materials related to their functions in energy devices. We then review nanoporous metal electrodes for applications in fuel cells, supercapacitors, and batteries to provide insights into selection and design criteria for meeting the diverse needs of energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. J. Erlebacher, R. Seshadri, MRS Bull. 34, 561 (2009).

    Google Scholar 

  2. Y. Ding, M.W. Chen, J. Erlebacher, J. Am. Chem. Soc. 126, 6876 (2004).

    Google Scholar 

  3. X.Y. Lang, A. Hirata, T. Fujita, M.W. Chen, Nat. Nanotechnol. 6, 232 (2011).

    Google Scholar 

  4. Y. Yu, L. Gu, X. Lang, C. Zhu, T. Fujita, M. Chen, J. Maier, Adv. Mater. 23, 2443 (2011).

    Google Scholar 

  5. N. Brandon, D. Brett, Philos. Trans. A. Math. Phys. Eng. Sci. 364, 147 (2006).

    Google Scholar 

  6. M.W. Verbrugge, P. Liu, J. Electrochem. Soc. 152, D79 (2005).

    Google Scholar 

  7. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, (Springer Science & Business Media, 2013).

  8. C.D. Rahn, C.-Y. Wang, Battery Systems Engineering (Wiley, 2013).

  9. D.M. Artymowicz, J. Erlebacher, R.C. Newman, Philos. Mag. 89, 1663 (2009).

    Google Scholar 

  10. R. Li, K. Sieradzki, Phys. Rev. Lett. 68, 1168 (1992).

    Google Scholar 

  11. L.H. Qian, M.W. Chen, Appl. Phys. Lett. 91, 83105 (2007).

    Google Scholar 

  12. Z. Qi, J. Weissmüller, ACS Nano 7, 5948 (2013).

    Google Scholar 

  13. T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M. Chen, Nat. Mater. 11, 1 (2012).

    Google Scholar 

  14. T. Krekeler, A.V. Straßer, M. Graf, K. Wang, C. Hartig, M. Ritter, J. Weissmüller, Mater. Res. Lett. 5, 314 (2017).

    Google Scholar 

  15. H. Mistry, A.S. Varela, S. Kühl, P. Strasser, B.R. Cuenya, Nat. Rev. Mater. 1, 16009 (2016).

    Google Scholar 

  16. C. Wang, N.M. Markovic, V.R. Stamenkovic, ACS Catal. 2, 891 (2012).

    Google Scholar 

  17. R. Wang, J.G. Liu, P. Liu, X.X. Bi, X.L. Yan, W.X. Wang, X.B. Ge, M.W. Chen, Y. Ding, Chem. Sci. 5, 403 (2014).

    Google Scholar 

  18. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B 56, 9 (2005).

    Google Scholar 

  19. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Nat. Mater. 6, 241 (2007).

    Google Scholar 

  20. S. Koh, P. Strasser, J. Am. Chem. Soc. 129, 12624 (2007).

    Google Scholar 

  21. J. Snyder, T. Fujita, M.W. Chen, J. Erlebacher, Nat. Mater. 9, 904 (2010).

    Google Scholar 

  22. C. Xu, R. Wang, M.W. Chen, Y. Zhang, Y. Ding, Phys. Chem. Chem. Phys. 12, 239 (2010).

    Google Scholar 

  23. R. Wang, C. Xu, X. Bi, Y. Ding, Energy Environ. Sci. 5, 5281 (2012).

    Google Scholar 

  24. X. Wang, J. Frenzel, W. Wang, H. Ji, Z. Qi, Z. Zhang, G. Eggeler, J. Phys. Chem. C 115, 4456 (2011).

    Google Scholar 

  25. X.Y. Lang, G.F. Han, B.B. Xiao, L. Gu, Z.Z. Yang, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, Q. Jiang, Adv. Funct. Mater. 25, 230 (2015).

    Google Scholar 

  26. J. Yu, Y. Ding, C. Xu, A. Inoue, T. Sakurai, M. Chen, Chem. Mater. 20, 4548 (2008).

    Google Scholar 

  27. X. Chen, C. Si, Y. Gao, J. Frenzel, J. Sun, G. Eggeler, G.Z. Zhang, J. Power Sources 273, 324 (2015).

    Google Scholar 

  28. J. Snyder, I. McCue, K. Livi, J. Erlebacher, J. Am. Chem. Soc. 134, 8633 (2012).

    Google Scholar 

  29. C. Xu, L. Wang, R. Wang, K. Wang, Y. Zhang, F. Tian, Y. Ding, Adv. Mater. 21, 2165 (2009).

    Google Scholar 

  30. C. Xu, Y. Zhang, L. Wang, L. Xu, X. Bian, H. Ma, Y. Ding, Chem. Mater. 21, 3110 (2009).

    Google Scholar 

  31. R. Wang, J. Liu, P. Liu, X. Bi, X. Yan, W. Wang, Y. Meng, X. Ge, M. Chen, Y. Ding, Nano Res. 7, 1569 (2014).

    Google Scholar 

  32. X. Yan, F. Meng, Y. Xie, J. Liu, Y. Ding, Sci. Rep. 2, 941 (2012).

    Google Scholar 

  33. Y. Ding, Y.J. Kim, J. Erlebacher, Adv. Mater. 16, 1897 (2004).

    Google Scholar 

  34. R. Wang, C. Wang, W. Cai, Y. Ding, Adv. Mater. 22, 1845 (2010).

    Google Scholar 

  35. M. Neurock, M. Janikb, A. Wieckowskic, Faraday Discuss. 140, 363 (2008).

    Google Scholar 

  36. J. Li, H.-M. Yin, X.-B. Li, E. Okunishi, Y.-L. Shen, J. He, Z.-K. Tang, W.-X. Wang, E. Yücelen, C. Li, Y. Gong, L. Gu, S. Miao, L.-M. Liu, J. Luo, Y. Ding, Nat. Energy 2, 17111 (2017).

    Google Scholar 

  37. H. Guo, H. Yin, X. Yan, S. Shi, Q. Yu, Z. Cao, J. Li, Sci. Rep. 6, 39162 (2016).

    Google Scholar 

  38. X.Y. Lang, H.T. Yuan, Y. Iwasa, M.W. Chen, Scr. Mater. 64, 923 (2011).

    Google Scholar 

  39. L.Y. Chen, J.L. Kang, Y. Hou, P. Liu, T. Fujita, A. Hirata, M.W. Chen, J. Mater. Chem. A 1, 9202 (2013).

    Google Scholar 

  40. L.Y. Chen, Y. Hou, J.L. Kang, A. Hirata, T. Fujita, M.W. Chen, Adv. Energy Mater. 3, 851 (2013).

    Google Scholar 

  41. F. Meng, Y. Ding, Adv. Mater. 23, 4098 (2011).

    Google Scholar 

  42. Y. Hou, L. Chen, L. Zhang, J. Kang, T. Fujita, J. Jiang, M. Chen, J. Power Sources 225, 304 (2013).

    Google Scholar 

  43. X.Y. Lang, L. Zhang, T. Fujita, Y. Ding, M.W. Chen, J. Power Sources 197, 325 (2012).

    Google Scholar 

  44. J. Kang, A. Hirata, H.J. Qiu, L. Chen, X. Ge, T. Fujita, M. Chen, Adv. Mater. 26, 269 (2014).

    Google Scholar 

  45. J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Angew. Chem. Int. Ed. Engl. 52, 1664 (2013).

    Google Scholar 

  46. A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005).

    Google Scholar 

  47. D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourg, A.M. Lubers, Chem. Soc. Rev. 38, 226 (2009).

    Google Scholar 

  48. X. Guo, J. Han, L. Zhang, P. Liu, A. Hirata, L. Chen, T. Fujita, M.W. Chen, Nanoscale 7, 15111 (2015).

    Google Scholar 

  49. S. Zhang, Y. Xing, T. Jiang, Z. Du, F. Li, L. He, W. Liu, J. Power Sources 196, 6915 (2011).

    Google Scholar 

  50. Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, Nat. Commun. 5, 3242 (2014).

    Google Scholar 

  51. Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, Science 337 (6094), 563 (2012).

    Google Scholar 

  52. J. Newman, W. Tiedemann, AIChE J. 21, 25 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Ding, Y. & Chen, M. Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bulletin 43, 43–48 (2018). https://doi.org/10.1557/mrs.2017.300

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.300

Navigation