Skip to main content
Log in

DNA origami devices for molecular-scale precision measurements

  • DNA Nanotechnology: A Foundation for Programmable Nanoscale Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Structural DNA nanotechnology offers the capacity to construct ultraminiaturized devices with programmed nanoscale geometry, mechanical and dynamic properties, and site-specific molecular functionalities. These features and the possibility to position and orient molecules in user-defined ways may be exploited to create custom instruments for precision measurements of molecular-scale structure, dynamics, and interactions. Such devices may help constrain molecular motion along interesting reaction coordinates and may also exert forces to probe the mechanical properties or dynamics of molecules under study. Multiple ways of reading out device states may be used, including atomic force microscopy or transmission electron microscopy imaging, single-molecule or bulk fluorescence, or ionic conductivity as in nanopore systems. Early successes with custom scientific instruments based on DNA origami underline the tremendous potential to enable new approaches to making scientific discoveries in biological and synthetic materials systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. K.V. Gothelf, MRS Bull. 42 (12), 897 (2017).

    Article  Google Scholar 

  2. N.D. Derr, B.S. Goodman, R. Jungmann, A.E. Leschziner, W.M. Shih, S.L. Reck-Peterson, Science 338 (6107), 662 (2012).

    Article  Google Scholar 

  3. R.F. Hariadi, A.J. Appukutty, S. Sivaramakrishnan, ACS Nano 10 (9), 8281 (2016).

    Article  CAS  Google Scholar 

  4. R.F. Hariadi, R.F. Sommese, S. Sivaramakrishnan, Elife 4, e05472 (2015).

    Article  Google Scholar 

  5. A. Angelin, S. Weigel, R. Garrecht, R. Meyer, J. Bauer, R.K. Kumar, M. Hirtz, C.M. Niemeyer, Angew. Chem. Int. Ed. Engl. 54 (52), 15813 (2015).

    Article  Google Scholar 

  6. R.O. Pedersen, E.G. Loboa, T.H. LaBean, Biomacromolecules 14 (12), 4157 (2013).

    Article  Google Scholar 

  7. A. Shaw, V. Lundin, E. Petrova, F. Fordos, E. Benson, A. Al-Amin, A. Herland, A. Blokzijl, B. Högberg, A.I. Teixeira, Nat. Methods 11 (8), 841 (2014).

    Article  Google Scholar 

  8. I.H. Stein, C. Steinhauer, P. Tinnefeld, J. Am. Chem. Soc. 133 (12), 4193 (2011).

    Article  Google Scholar 

  9. K. Vogele, J. List, G. Pardatscher, N.B. Holland, F.C. Simmel, T. Pirzer, ACS Nano 10 (12), 11377 (2016).

    Article  Google Scholar 

  10. G.P. Acuna, F.M. Moller, P. Holzmeister, S. Beater, B. Lalkens, P. Tinnefeld, Science 338 (6106), 506 (2012).

    Article  Google Scholar 

  11. K. Pan, E. Boulais, L. Yang, M. Bathe, Nucleic Acids Res. 42 (4), 2159 (2014).

    Article  Google Scholar 

  12. N.A. Bell, C.R. Engst, M. Ablay, G. Divitini, C. Ducati, T. Liedl, U.F. Keyser, Nano Lett. 12 (1), 512 (2012).

    Article  Google Scholar 

  13. R. Wei, T.G. Martin, U. Rant, H. Dietz, Angew. Chem. Int. Ed. Engl. 51 (20), 4864 (2012).

    Article  Google Scholar 

  14. M. Langecker, V. Arnaut, T.G. Martin, J. List, S. Renner, M. Mayer, H. Dietz, F.C. Simmel, Science 338 (6109), 932 (2012).

    Article  Google Scholar 

  15. S. Krishnan, D. Ziegler, V. Arnaut, T.G. Martin, K. Kapsner, K. Henneberg, A.R. Bausch, H. Dietz, F.C. Simmel, Nat. Commun. 7, 12787 (2016).

    Article  Google Scholar 

  16. K. Gopfrich, C.Y. Li, M. Ricci, S.P. Bhamidimarri, J. Yoo, B. Gyenes, A. Ohmann, M. Winterhalter, A. Aksimentiev, U.F. Keyser, ACS Nano 10 (9), 8207 (2016).

    Article  Google Scholar 

  17. P. Shrestha, S. Jonchhe, T. Emura, K. Hidaka, M. Endo, H. Sugiyama, H. Mao, Nat. Nanotechnol. 12 (6), 582 (2017).

    Article  Google Scholar 

  18. T. Liedl, B. Högberg, J. Tytell, D.E. Ingber, W.M. Shih, Nat. Nanotechnol. 5, 520 (2010), doi:10.1038/nnano.2010.107.

  19. A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, M. Komiyama, Nat. Commun. 2, 449 (2011).

    Article  Google Scholar 

  20. J.J. Funke, P. Ketterer, C. Lieleg, S. Schunter, P. Korber, H. Dietz, Sci. Adv. 2 (11), e1600974 (2016).

    Article  Google Scholar 

  21. J.V. Le, Y. Luo, M.A. Darcy, C.R. Lucas, M.F. Goodwin, M.G. Poirier, C.E. Castro, ACS Nano 10 (7), 7073 (2016).

    Article  Google Scholar 

  22. J.J. Funke, P. Ketterer, C. Lieleg, P. Korber, H. Dietz, Nano Lett. 16 (12), 7891 (2016).

    Article  Google Scholar 

  23. F. Kilchherr, C. Wachauf, B. Pelz, M. Rief, M. Zacharias, H. Dietz, Science 353 (6304), aaf5508 (2016).

    Article  Google Scholar 

  24. M.W. Hudoba, Y. Luo, A. Zacharias, M.G. Poirier, C.E. Castro, ACS Nano 11 (7), 6566 (2017).

    Article  Google Scholar 

  25. P.C. Nickels, B. Wunsch, P. Holzmeister, W. Bae, L.M. Kneer, D. Grohmann, P. Tinnefeld, T. Liedl, Science 354 (6310), 305 (2016).

    Article  Google Scholar 

  26. M. Iwaki, S.F. Wickham, K. Ikezaki, T. Yanagida, W.M. Shih, Nat. Commun. 7, 13715 (2016).

    Article  Google Scholar 

  27. T.G. Martin, T.A. Bharat, A.C. Joerger, X.C. Bai, F. Praetorius, A.R. Fersht, H. Dietz, S.H. Scheres, Proc. Natl. Acad. Sci. U.S.A. 113 (47), E7456 (2016).

    Article  Google Scholar 

  28. Y. Suzuki, M. Endo, Y. Katsuda, K. Ou, K. Hidaka, H. Sugiyama, J. Am. Chem. Soc. 136 (1), 211 (2014).

    Article  Google Scholar 

  29. Y. Sannohe, M. Endo, Y. Katsuda, K. Hidaka, H. Sugiyama, J. Am. Chem. Soc. 132 (46), 16311 (2010).

    Article  Google Scholar 

  30. R. Jungmann, M.S. Avendano, M. Dai, J.B. Woehrstein, S.S. Agasti, Z. Feiger, A. Rodal, P. Yin, Nat. Methods 13 (5), 439 (2016).

    Article  Google Scholar 

  31. M. Dai, R. Jungmann, P. Yin, Nat. Nanotechnol. 11 (9), 798 (2016).

    Article  Google Scholar 

  32. M. Reuss, F. Fördo˝s, H. Blom, O. Öktem, B. Högberg, H. Brismar, New J. Phys. 19, 025013 (2017).

    Article  Google Scholar 

  33. J.J. Schmied, M. Raab, C. Forthmann, E. Pibiri, B. Wunsch, T. Dammeyer, P. Tinnefeld, Nat. Protoc. 9 (6), 1367 (2014).

    Article  Google Scholar 

  34. E. Pfitzner, C. Wachauf, F. Kilchherr, B. Pelz, W.M. Shih, M. Rief, H. Dietz, Angew. Chem. Int. Ed. Engl. 52 (30), 7766 (2013).

    Article  Google Scholar 

  35. H.T. Maune, S.P. Han, R.D. Barish, M. Bockrath, W.A. Goddard III, P.W. Rothemund, E. Winfree, Nat. Nanotechnol. 5 (1), 61 (2010).

    Article  Google Scholar 

  36. Y. Yang, J. Wang, H. Shigematsu, W. Xu, W.M. Shih, J.E. Rothman, C. Lin, Nat. Chem. 8 (5), 476 (2016).

    Article  Google Scholar 

  37. A. Gopinath, E. Miyazono, A. Faraon, P.W. Rothemund, Nature 535 (7612), 401 (2016).

    Article  Google Scholar 

  38. E. Akbari, M.Y. Mollica, C.R. Lucas, S.M. Bushman, R.A. Patton, M. Shahhosseini, J.W. Song, C.E. Castro, Adv. Mater. 1703632 (2017), https://doi.org/10.1002/adma.201703632.

  39. S. Modi, M.G. Swetha, D. Goswami, G.D. Gupta, S. Mayor, Y. Krishnan, Nat. Nanotechnol. 4 (5), 325 (2009).

    Article  Google Scholar 

  40. S. Saha, V. Prakash, S. Halder, K. Chakraborty, Y. Krishnan, Nat. Nanotechnol. 10 (7), 645 (2015).

    Article  Google Scholar 

  41. A. Chopra, S. Krishnan, F.C. Simmel, Nano Lett. 16 (10), 6683 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, C.E., Dietz, H. & Högberg, B. DNA origami devices for molecular-scale precision measurements. MRS Bulletin 42, 925–929 (2017). https://doi.org/10.1557/mrs.2017.273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.273

Navigation