Skip to main content
Log in

Self-organizing materials built with DNA

  • DNA Nanotechnology: A Foundation for Programmable Nanoscale Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Biological systems illustrate how complex and dynamic physical and chemical interactions between many different components can produce organized structures across length scales, ranging from angstroms to hundreds of meters, and precise temporal control over diverse material dynamics. While mechanisms for pattern formation such as reaction-diffusion processes, message passing, or rule-based assembly have been studied extensively using mathematical models, it can be difficult to create synthetic materials that implement these mechanisms. Here, we describe how DNA nanotechnology techniques make it possible to systematically build systems capable of complex self-organization or pattern formation across scales. DNA-programmed short-range interactions can be used to build aperiodic crystals and assemblies with long-range order, form patterns using reaction-diffusion and chemical message passing, and create self-organizing or stimulus-responsive amorphous materials, including gels or cell-sized compartments. Exploiting principles from self-organization using DNA-based interactions makes it possible to build materials with complex long-range order and intelligent spatiotemporal responses to a variety of stimuli using relatively simple bottom-up methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. H. Valladas, J. Clottes, J.-M. Geneste, M.A. Garcia, M. Arnold, H. Cachier, N. Tisnérat-Laborde, Nature 413, 479 (2001).

    Article  CAS  Google Scholar 

  2. E. Haeckel, Art Forms in Nature (Prestel, Munich, Germany, 2004).

  3. D.A.W. Thompson, On Growth and Form (Cambridge University Press, Cambridge, UK, 2014).

  4. E. Schrödinger, What Is Life? The Physical Aspect of the Living Cell (Cambridge University Press, Cambridge, UK, 1944).

  5. J.H.E. Cartwright, A.L. Mackay, Philos. Trans. R. Soc. Lond. A 370, 2807 (2012).

    Google Scholar 

  6. A.M. Turing, Philos. Trans. R. Soc. Lond. B 237, 37 (1952).

    Article  Google Scholar 

  7. J. Von Neumann, A.W. Burks, Theory of Self-Reproducing Automata (University of Illinois Press, Urbana, IL, 1966).

  8. S. Wolfram, Nature 311, 419 (1984).

    Article  Google Scholar 

  9. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  Google Scholar 

  10. D. Soloveichik, G. Seelig, E. Winfree, Proc. Natl. Acad. Sci. U.S.A. 107, 5393 (2010).

    Article  Google Scholar 

  11. E. Prince, A.J.C. Wilson, International Tables for Crystallography (Kluwer Academic Publishers, Dordrecht, 2004).

  12. M. Baake, U. Grimm, Aperiodic Order, Volume 1: A Mathematical Invitation, Encyclopedia of Mathematics and Its Applications, Book 149 (Cambridge University Press, Cambridge, UK, 2013).

  13. D. Levine, P.J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).

    Article  Google Scholar 

  14. G. Tikhomirov, P. Petersen, L. Qian, Nat. Nanotechnol. 12, 251 (2017).

    Article  CAS  Google Scholar 

  15. E. Winfree, Algorithmic Self-Assembly of DNA (California Institute of Technology, Pasadena, CA, 1998).

  16. P.W. Rothemund, N. Papadakis, E. Winfree, PLoS Biol. 2, e424 (2004).

    Article  Google Scholar 

  17. R.D. Barish, R. Schulman, P.W. Rothemund, E. Winfree, Proc. Natl. Acad. Sci. U.S.A. 106, 6054 (2009).

    Article  Google Scholar 

  18. M. Cook, P.W. Rothemund, E. Winfree, “Self-Assembled Circuit Patterns,” 9th Int. Workshop DNA-Based Comput., J. Chen. J. Reif, Eds. (Springer, Berlin, 2004), p. 91.

  19. D. Soloveichik, E. Winfree, SIAM J. Comput. 36, 1544 (2007).

    Article  Google Scholar 

  20. P.W. Rothemund, E. Winfree, “The Program-Size Complexity of Self-Assembled Squares,” Proc. 32nd Annu. ACM Symp. Theory Comput. (ACM, New York, 2000), p. 459.

  21. M.F. Cohen, J. Shade, S. Hiller, O. Deussen, ACM Trans. Graph. 22, 287 (2003).

    Article  Google Scholar 

  22. R. Schulman, B. Yurke, E. Winfree, Proc. Natl. Acad. Sci. U.S.A. 109, 6405 (2012).

    Article  Google Scholar 

  23. E. Winfree, “Self-Healing Tile Sets,” in Nanotechnology: Science and Computation, Natural Computing Series (Springer, Berlin, Germany, 2006), p. 55.

  24. J.E. Padilla, R. Sha, M. Kristiansen, J. Chen, N. Jonoska, N.C. Seeman, Angew. Chem. Int. Ed. 54, 5939 (2015).

    Article  CAS  Google Scholar 

  25. A.J. Lotka, J. Am. Chem. Soc. 42, 1595 (1920).

    Article  Google Scholar 

  26. A.T. Winfree, J. Chem. Educ. 61, 661 (1984).

    Article  Google Scholar 

  27. P. Wang, G. Chatterjee, H. Tan, T.H. LaBean, A.J. Turberfield, C.E. Castro, G. Seelig, Y. Ke, MRS Bull. 42 (12), 889 (2017).

    Article  CAS  Google Scholar 

  28. D.Y. Zhang, G. Seelig, Nat. Chem. 3, 103 (2011).

    Article  CAS  Google Scholar 

  29. J. Kim, I. Khetarpal, S. Sen, R.M. Murray, Nucleic Acids Res. 42, 6078 (2014).

    Article  CAS  Google Scholar 

  30. G. Seelig, D. Soloveichik, D.Y. Zhang, E. Winfree, Science 314, 1585 (2006).

    Article  CAS  Google Scholar 

  31. L. Qian, E. Winfree, Science 332, 1196 (2011).

    Article  CAS  Google Scholar 

  32. L. Qian, E. Winfree, J. Bruck, Nature 475, 368 (2011).

    Article  CAS  Google Scholar 

  33. Y.J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik, G. Seelig, Nat. Nanotechnol. 8, 755 (2013).

    Article  CAS  Google Scholar 

  34. J. Kim, E. Winfree, Mol. Syst. Biol. 7, 465 (2011).

    Article  Google Scholar 

  35. K. Montagne, R. Plasson, Y. Sakai, T. Fujii, Y. Rondelez, Mol. Syst. Biol. 7, 466 (2011).

    Article  Google Scholar 

  36. M. Schwarz-Schilling, J. Kim, C. Cuba, M. Weitz, E. Franco, F.C. Simmel, Methods Mol. Biol. 1342, 185 (2016).

    Article  Google Scholar 

  37. T. Fuji, Y. Rondelez, ACS Nano 7, 27 (2013).

    Article  CAS  Google Scholar 

  38. A. Padirac, T. Fuji, A. Estévez-Torres, Y. Rondelez, J. Am. Chem. Soc. 135, 14586 (2013).

    Article  CAS  Google Scholar 

  39. A.S. Zadorin, Y. Rondelez, G. Gines, V. Dilhas, G. Urtel, A. Zambrano, J.-C. Galas, A. Estevez-Torres, Nat. Chem. 9, 990 (2017).

    Article  CAS  Google Scholar 

  40. G. Gines, A.S. Zadorin, J.C. Galas, T. Fuji, A. Estevez-Torres, Y. Rondelez, Nat. Nanotechnol. 12, 351 (2017).

    Article  CAS  Google Scholar 

  41. G. Grossi, A. Jaekel, E.S. Andersen, B. Saccà, MRS Bull. 42 (12), 920 (2017).

    Article  CAS  Google Scholar 

  42. A.S. Zadorin, Y. Rondelez, J.C. Galas, A. Estevez-Torres, Phys. Rev. Lett. 114, 068301 (2015).

    Article  Google Scholar 

  43. M. Weitz, J. Kim, K. Kapsner, E. Winfree, E. Franco, F.C. Simmel, Nat. Chem. 6, 295 (2014).

    Article  CAS  Google Scholar 

  44. K. Hasatani, M. Leocmach, A.J. Genot, A. Estevez-Torres, T. Fujii, Y. Rondelez, Chem. Commun. 49, 8090 (2013).

    Article  CAS  Google Scholar 

  45. M. Langecker, V. Arnaut, T.G. Martin, J. List, S. Renner, M. Mayer, H. Dietz, F.C. Simmel, Science 338, 932 (2012).

    Article  CAS  Google Scholar 

  46. S. Krishnan, D. Ziegler, V. Arnaut, T.G. Martin, K. Kapsner, K. Henneberg, A.R. Bausch, H. Dietz, F.C. Simmel, Nat. Commun. 7, 12787 (2016).

    Article  CAS  Google Scholar 

  47. C. Kurokawa, K. Fujiwara, M. Morita, I. Kawamata, Y. Kawagishi, A. Sakai, Y. Murayama, Shin-ichiro M. Nomura, S. Murata, M. Takinoue, “DNA Cytoskeleton for Stabilizing Artificial Cells,” Proc. Natl. Acad. Sci. U.S.A. 114, 7228 (2017).

    Article  CAS  Google Scholar 

  48. Y. Sato, Y. Hiratsuka, I. Kawamata, S. Murata, Shin-ichiro M. Nomura, Sci. Rob. 2, eaal3735 (2017).

    Article  Google Scholar 

  49. S.H. Um, J.B. Lee, N. Park, S.Y. Kwon, C.C. Umbach, D. Luo, Nat. Mater. 5, 797 (2006).

    Article  CAS  Google Scholar 

  50. S.M. Douglas, J.J. Chou, W.M. Shih, Proc. Natl. Acad. Sci. U.S.A. 104, 6644 (2007).

    Article  Google Scholar 

  51. M. Siavashpouri, C.H. Wachauf, M.J. Zakhary, F. Praetorius, H. Dietz, Z. Dogic, Nat. Mater. 16, 849 (2017).

    Article  CAS  Google Scholar 

  52. A.M. Mohammed, P. Šulc, J. Zenk, R. Schulman, Nat. Nanotechnol. 12, 312 (2017).

    Article  CAS  Google Scholar 

  53. J.S. Kahn, Y. Hu, I. Willner, Acc. Chem. Res. 50, 680 (2017).

    Article  CAS  Google Scholar 

  54. T. Liedl, H. Dietz, B. Yurke, F. Simmel, Small 3, 1688 (2007).

    Article  CAS  Google Scholar 

  55. A. Cangialosi, C. Yoon, J. Liu, Q. Huang, J. Guo, T.D. Nguyen, D.H. Gracias, R. Schulman, Science 357, 1126 (2017).

    Article  CAS  Google Scholar 

  56. K. Gothelf, MRS Bull. 42 (12), 897 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.C.S. acknowledges financial support for related work by the European Research Council (ERC Grant Agreement No. 694410). R.S. acknowledges financial support for related work from the National Science Foundation (NSF 1527377) and US Department of Energy (DE-SC0010426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich C. Simmel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simmel, F.C., Schulman, R. Self-organizing materials built with DNA. MRS Bulletin 42, 913–919 (2017). https://doi.org/10.1557/mrs.2017.271

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.271

Navigation